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Abstract: We present a generalisation of the flavour-ordering method applied to the

chiral nonlinear sigma model with any number of flavours. We use an extended Lagrangian

with terms containing any number of derivatives, organised in a power-counting hierarchy.

The method allows diagrammatic computations at tree-level with any number of legs at

any order in the power-counting. Using an automated implementation of the method, we

calculate amplitudes ranging from 12 legs at leading order, O(p2), to 6 legs at next-to-

next-to-next-to-leading order, O(p8). In addition to this, we generalise several properties

of amplitudes in the nonlinear sigma model to higher orders. These include the double soft

limit and the uniqueness of stripped amplitudes.

ar
X

iv
:1

90
9.

13
68

4v
1 

 [
he

p-
th

] 
 3

0 
Se

p 
20

19

mailto:bijnens@thep.lu.se
mailto:karol.kampf@mff.cuni.cz
mailto:mattias.sjo@thep.lu.se


Contents

1 Introduction 2

2 The nonlinear sigma model 3

2.1 Restrictions due to fixed Nf and dimensionality 5

3 Flavour-ordering 6

3.1 Some notation 7

3.2 Stripped vertex factors 8

3.3 Stripped amplitudes 9

3.4 Flavour-ordered diagrams 9

3.5 The singlet problem and its solution 12

3.6 Uniqueness of stripped amplitudes 14

4 NLSM amplitudes 16

4.1 Adler zeroes and soft limits 16

4.2 Generalised Mandelstam invariants 17

4.3 Diagram generation 19

5 Explicit amplitudes 20

5.1 4-point amplitudes 20

5.2 The O(p2) 6- and 8-point amplitudes 22

5.3 The O(p4) 6-point amplitude 23

5.4 Further amplitudes 23

6 Conclusions 25

A The NNLO NLSM Lagrangian 26

A.1 Renormalisation 26

A.2 Explicit divergences 27

B The orthogonality of flavour structures 29

C The double soft limit 31

D Closed Mandelstam bases 32

D.1 The basis for R = {2, 4} 32

D.2 The basis for R = {3, 3} 32

D.3 The basis for R = {2, 2, 2} 34

– 1 –



E Explicit amplitudes 34

E.1 The O(p6) 6-point amplitude 34

E.2 The O(p2) 10-point amplitude 38

E.3 The O(p2) 12-point amplitude 39

1 Introduction

In 1960, Gell-Mann and Lévy [1] proposed a number of models for mesons and nucle-

ons. Two of these, the linear and nonlinear sigma models, were extended to highly gen-

eral quantum field theories with many different applications. One of the most important

application is interaction of mesons described by the nonlinear sigma model (NLSM) ex-

tended by Weinberg [2] and Gasser and Leutwyler [3, 4] into chiral perturbation theory

(χPT). A recent introductory review is [5] and more introductory literature can be found

at [6]. This effective field theory (EFT) of low-energy QCD is not only widely used today

in many phenomenological applications, but also motivated further theoretical avenues for

the beyond-standard-model physics such as technicolour and little Higgs models. Examples

of recent work in χPT is the calculation of meson-meson scattering for a general number

of flavours at two loops [7], and masses and decays up to next-to-next-to-leading order [8].

In this paper, we will push the study of this type of models in a different direction.

Even at tree-level, diagrammatic many-particle calculations in EFTs become very com-

plicated due to the rapidly increasing number of terms in the effective Lagrangian, but can

be facilitated with tools similar to those used for gluon scattering in perturbative QCD.

In recent years, the renewal of interest in the S-matrix program for the gauge theory and

gravity has in fact led to progress in both simplification of complicated technical calcula-

tions as well as discoveries of new properties [9]. The possibility to apply similar amplitude

methods to EFTs started recently and is mainly connected with studies of the NLSM. First,

it was demonstrated that it is indeed possible to employ recursive methods in [10], further

studied and developed in [11]. The crucial ingredient in developing the recursive formula

is the existence of the so-called Adler zero [12], the vanishing of scattering amplitudes for

soft momenta of Goldstone bosons (pions for NLSM), as a consequence of a spontaneous

symmetry breaking in EFT. The argument can be also inverted and used for classification

of the allowed space of EFT theories based on their soft properties. It turned out that the

leading order of NLSM is one important representative of exceptional EFTs. The excep-

tional status of those theories is connected with the fact that all their interaction vertices

are uniquely fixed by a single coupling constant, most conveniently the lowest four-point

vertex. This can be labelled as a soft-bootstrap program, studied and developed in recent

years by several groups [13–15]. It represents a rebirth of similar attempts at the end of

the 1960s [16–18].

The exceptional theories have also appeared in completely different context, the so-

called CHY scattering equation [19], studied more recently also in [20]. This indeed suggests

their uniqueness, and though of completely different nature, it hints to deeper connections
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with gauge theory and gravity. It is probably one of the main motivation behind the

recent increase of activities in studying theoretical properties of NLSM: [21–33]. This

effort demonstrates the importance of NLSM; however, these studies mainly concentrated

only on the leading, two-derivative (O(p2)) order. As pointed out in [15], it is important

to expand the on-shell soft bootstrap program to higher orders. Our work aims in this

direction. An early attempt is [34] and one that appeared during the writing up of this

paper is [35].

We will mainly focus on the problem of calculating scattering amplitudes at tree-

level with increasing number of legs and orders, with possible flavour splitting, i.e. bey-

ond single-trace amplitudes. Using recursion relations, tree-level amplitudes based on the

leading-order term in the Lagrangian have been computed with up to 10 external particles

[36]. Using more general recursion relations based on soft limits [11], 6-particle tree-level

interactions have been computed using the next-to-leading-order Lagrangian [15]. These

methods suffer limitations when higher-order Lagrangian terms are used, and can not

handle loops.

In this paper, we generalise an enhanced diagrammatic method called flavour-ordering,

which was introduced in [36]. We apply it to a generalised version of the SU(N) or

U(N) chiral NLSM, which includes terms with arbitrarily high power-counting order in

the effective Lagrangian. This generalisation corresponds to removing all external fields

from the general χPT Lagrangian. The method allows computation of tree-level amplitudes

with any number of external particles using Lagrangian terms of any order, and is valid

also beyond tree-level. It is significantly more efficient than a brute-force Feynman diagram

approach, and the caveats that appear beyond the leading order can be handled with simple

rules. Preliminary results can be found in the Lund university master thesis [37].

In section 2, we describe the NLSM and introduce our notation. Our main new results

on the method side are described in section 3 and 4. Section 3 discusses our generalization

of flavour-ordering, while section 4 discusses how this can be used to calculate more complex

amplitudes as well as the kinematic methods needed. Section 5 discusses the amplitudes

we have calculated using our methods; the longer expressions are relegated to appendix E

and the supplementary material [38]. Our main conclusions are reviewed in section 6. The

Lagrangians are given in appendix A, together with some results regarding renormalisation

of the amplitudes. Appendix B contains the proof of the orthogonality of flavour structures.

The double soft limit with multiple traces is derived in appendix C, and appendix D derives

the minimal bases of kinematic variables used in the amplitude calculations.

2 The nonlinear sigma model

The nonlinear sigma model describes the Nambu-Goldstone bosons that arise when a global

symmetry group G is broken to a subgroup H. Each configuration of the Nambu-Goldstone

fields can be uniquely mapped to an element of the coset space G/H, and from each such

coset, a representative ξ(φ) may be chosen to represent the field configuration φ.

In the context of low-energy QCD, the group G is the chiral group SU(Nf )L ×
SU(Nf )R, which is a global symmetry of the massless QCD Lagrangian with Nf quark
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flavours. It is broken to the diagonal subgroup H = SU(Nf )V , so the coset space

G/H is isomorphic to SU(Nf ). With a chiral decomposition of the coset representat-

ives, ξ = (ξL, ξR), we may represent the Nambu-Goldstone fields with the unitary matrix

u(φ) = ξR(φ) = ξ†L(φ) parametrised as

u(φ) = exp

(
iΦ(φ)

F
√

2

)
, Φ(φ) = taφa (2.1)

with the flavour index with a running from 1 to N2
f − 1. Here, ta are the generators of

SU(Nf ), and F is a constant.1 We use Einstein’s summation notation without distinc-

tion between upper and lower flavour indices, and use the following normalisation for the

generators: 〈
tatb
〉

= δab,
[
ta, tb

]
= ifabctc, (2.2)

where 〈· · · 〉 denotes a trace over internal indices. Here, fabc are the totally antisymmetric

structure constants of SU(Nf ). With this convention, the SU(2) generators can be chosen

such that they relate to the Pauli matrices as ta = σa/
√

2, fabc = εabc
√

2. Likewise, the

SU(3) generators can be chosen in terms of the Gell-Mann matrices like ta = λa/
√

2.

Under a chiral transformation g = (gL, gR), u(φ) transforms as

u
g−→ gR uh

†(u, g) = h(u, g)u gL, (2.3)

where the compensating transformation h(u, g) ∈ H is defined by the above relation.

When constructing the most general symmetry-consistent Lagrangian, it is more con-

venient to replace u by

uµ = i
(
u†∂µu− u∂µu†

)
, uµ

g−→ h(u, g)uµh(u, g)†, (2.4)

which was introduced in this context by [39]. Higher derivatives are applied through the

covariant derivative

∇µX = ∂µX + [Γµ, X], Γµ =
1

2

(
u†∂µu+ u∂µu

†
)
, (2.5)

which has the convenient properties

X
g−→ hXh† ⇒ ∇µX g−→ h∇µXh†, ∇µuν −∇νuµ = 0. (2.6)

Note that we do not include the external fields that are used in chiral perturbation theory.

The Lagrangian is often written using derivatives of U(φ) = u(φ)2 and its conjugate.

It is possible to convert directly between ∂µU
(†) and uµ by using unitarity:

∂µU
†∂νU = −(U †∂µU)(U †∂νU), U †∂µU = u†u†∂µuu− ∂µu†u = −iu†uµu. (2.7)

This makes ∂µU
†∂νU wholly interchangeable with uµuν inside a trace.

1The above expression for u(φ) is only one of many possible parametrisations, but is the most common.
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With the above definitions, the simplest valid term in the NLSM Lagrangian is

L2 =
F 2

4
〈uµuµ〉, (2.8)

where the constant in front is fixed by the canonical normalisation of the kinetic term.

Beyond this, there is an infinite sequence of increasingly complex terms permitted by

the chiral symmetries2. We also impose parity (P ), charge-conjugation (C) and Lorentz

invariance. We restrict to the sector that involves an even number of Levi-Civita tensors

(εµναβ), which can always be rewritten in terms of the Minkowski metric only. The terms

can be organised into a hierarchy based on power counting in the momentum scale p. Since

each derivative in the Lagrangian brings down one factor of p into an amplitude, both

uµ and ∇µ are O(p) and the power-counting at the Lagrangian level is simply counting

derivatives. Thus, we may split the Lagrangian as

L =
∞∑
n=1

L2n, (2.9)

where L2n is O(p2n) and contains 2n derivatives carrying n pairs of Lorentz indices. As-

suming a low momentum scale, we may then ignore all terms above a certain n.

The four-derivative O(p4) Lagrangian is, for general Nf [3, 4, 40],

L4 = L0〈uµuνuµuν〉+ L1〈uµuµ〉〈uνuν〉+ L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉. (2.10)

The Li are independent coupling constants, so-called low-energy constants (LECs). It is

in principle possible to derive the LECs from any underlying theory (e.g. QCD), but in

practice, they are unknown parameters that must be measured by experiments or lattice

simulations.

The Lagrangian is known also at O(p6) and O(p8). The latter is the first 135 terms in

the χPT Lagrangian of [41]; the former has only been published with different notation and

formulated in a way that gives redundant terms when näıvely reduced to the NLSM [40].

A more compatible version, constructed in conjunction with [41], is given in appendix A.

The Lagrangian at O(p10) and above has not been studied.

2.1 Restrictions due to fixed Nf and dimensionality

The Lagrangians discussed above are the most general ones. They are valid in any dimen-

sion and for a generic number of flavours.

When Nf is small, the Cayley-Hamilton theorem gives additional linear relations that

reduce the number of independent terms. The theorem states that for any Nf ×Nf matrix

M , the characteristic polynomial

p(λ) = det(λ1−M), (2.11)

2Many authors refer to L2 as the full Lagrangian of the NLSM. We instead use “the NLSM” to refer to
the more general version, which includes also terms with more derivatives.
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which is zero whenever λ is an eigenvalue of M , is also satisfied by M , i.e. p(M) = 0 when

viewed as a matrix polynomial. When Nf = 2, this implies the identity

{A,B} = 〈AB〉, (2.12)

for traceless 2× 2 matrices A,B. When Nf = 3, the identity is∑
permutations of
{ABC}

〈ABCD〉 =
∑

cyclic permutations
of {ABC}

〈AB〉〈CD〉, (2.13)

for traceless matrices. The relations when 〈A〉 6= 0 used in [40, 41] contain many more

terms.

As an example, we may choose A = C = uµ and B = D = uν ; these are traceless as

a consequence of the identity ∂µ det(A) = det(A)
〈
A−1∂µA

〉
, which holds for any invertible

A, and which reduces to
〈
A†∂µA

〉
= 0 when A ∈ SU(Nf ).

The Nf = 2 identity allows for the elimination of all Lagrangian terms containing a

product of two or more traces from any L2n; for instance, L1 and L2 may be eliminated

from L4. The Nf = 3 identity allows for the removal of a single term from L4, 7 terms

from L6, and so on. The standard choice is to remove the L0-term of (2.10) for Nf = 3

[4], and the L0- and L3-terms for Nf = 2 [3].

When the spacetime dimension D is finite, the Schouten identity implies

(fµ1µ2···µkuµ1uµ2 · · ·uµk)2 = 0 if k > D, (2.14)

where fµ1µ2···µk is antisymmetric in all its indices. This results in additional linear relations

among the terms in L2k for k > D. For D = 4, this does not affect any of the currently

known orders. In the sector involving a single Levi-Civita tensor it already removes a large

number of terms at O(p6).

3 Flavour-ordering

With the structure of the NLSM established, we are ready to use it for perturbative calcu-

lations of scattering amplitudes. However, the infinite number of interaction terms requires

the use of some scheme for restricting it to a manageable subset. Even then, the resulting

vertex factors are very intricate, both in their dependence on the particle momenta, and in

their group-algebraic structure. This leaves only the simplest Feynman diagrams tractable

by hand, and even computer algebra becomes highly time-consuming when tackling more

complicated cases directly.

In this section, we will direct much effort towards the development of simpler ways

to perform these calculations. As we will see, the group-algebraic structure of the flavour

indices carried by the particles can be used to condense an amplitude into a much more

easily manageable expression, for which simpler calculation rules exist. We will mostly

follow the derivation of O(p2) flavour-ordering as presented in [36], but insert the notation

to support our own generalisations to higher-order vertices.
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3.1 Some notation

In this section, we will need a compact notation for writing the flavour structures of scat-

tering amplitudes. A flavour structure is a product of one or more traces containing group

generators carrying the flavour indices of the external particles in some order. We will

represent this as

Fσ(r1, r2, . . .) = 〈taσ(1) · · · taσ(r1)〉〈taσ(r1+1) · · · taσ(r1+r2)〉 · · · . (3.1)

The ith trace contains ri generators, ordered by a permutation σ ∈ Sn. For example,

〈a1a3〉〈a2a4〉 = F1324(2, 2), and 〈a1a2 · · · an〉 = Fid(n), where id(i) = i is the identity

permutation.

We encapsulate the ri in R = {r1, r2, . . . , r|R|}. We call R a flavour splitting. |R| is

the number of traces in the flavour structure, and we write Fσ(R) rather than Fσ(r1, . . .).

For a structure with n indices, we impose the restrictions

|R|∑
i=1

ri = n, r1 ≤ r2 ≤ . . . ≤ r|R|. (3.2)

The latter limits the number of equivalent ways to write a flavour structure.

Since traces are cyclic, Fσ(R) will be invariant under cyclic permutations of the indices

inside each trace. If ri = rj , it will also be invariant under swapping the contents of the

ith and jth trace. As a generalisation of the cyclic group Zn, we define ZR to be the group

of all permutations under which Fσ(R) is invariant. For instance,

Z{2,2} = {12 34, 21 34, 12 43, 21 43, 34 12, 43 12, 34 21, 43 21},
Z{2,4} = {12 3456, 21 3456, 12 4563, 21 4563, 12 5634, 21 5634, 12 6345, 21 6345},

(3.3)

where we label a permutation by how 12 . . . n ends up. We have inserted spaces between

blocks of indices corresponding to different traces to make it more legible.

In this notation, we generalise the notion of two permutations being equivalent modulo

a cyclic permutation: we write σ ≡ ρ (mod ZR) if Fσ(R) = Fρ(R). For instance, 1234 ≡
2341 (mod Z{4}) and 1234 ≡ 2134 (mod Z{2,2}).

Z{2,2} is isomorphic to the dihedral group D4. Other ZR are not isomorphic to such

well-known groups, but Z{2,4} ' Z2×Z4, and in general, ZR ' Zr1×Zr2×· · · whenever all

ri are different. When some ri are equal (say, m in a row), the group will be non-abelian

and isomorphic to a semidirect product, e.g. Z{2,2,2} ' (Z2 × Z2 × Z2) o S3. In general,

ZR ' (Zr1 × Zr2 × · · · ) o (Sm1 × Sm2 × · · · ), where each mj is the length of a stretch of

equal ri.
3

3The proof follows from the following definition of the semidirect product: if a group G has a subgroup
H and a normal subgroup N , then G = N oH if G = {nh | n ∈ N,h ∈ H} and N ∩H = e, the identity
element. The groups N ' (Zr1 × · · · ) of cyclings within traces and H ' (Sm1 × · · · ) of swaps of equal-size
traces are clearly subgroups of G = ZR, and N is normal since gng−1 ∈ N for any n ∈ N , g ∈ G — any
trace swaps in g are cancelled by g−1, leaving only cyclings. Any permutation in ZR is the composition of
a cycling and a trace swap, and the only element shared by N and H is id, which completes the proof.
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3.2 Stripped vertex factors

Each term in the Lagrangian will produce an infinite tower of interaction vertices with

increasingly many legs. Due to parity and the absence of Levi-Civita tensors, only terms

with an even number of legs are produced. If the Lagrangian term contains a product of

several traces, the flavour indices of the corresponding vertices will be distributed between

the same number of traces in multiple ways. If a trace contains an even number of uµ’s in

the Lagrangian, the corresponding trace in the vertices will only contain an even number

of indices, again from parity.

We will organise the vertices by their power-counting order and flavour splitting. For

instance, in the expansion of L2 (2.8),

L2 =
1

2

〈
tatb
〉
∂µφ

a∂µφb +
1

F 2

〈
tatbtctd

〉(1

6
φa∂µφ

bφc∂µφd − 1

12
φaφb∂µφ

c∂µφd
)

+ . . . ,

(3.4)

both terms attached to the 4-index trace will be part of the O(p2) vertex with splitting

R = {4}, which we label Vabcd2,{4}, a vertex (factor). At order pm, a specific flavour splitting

R for a vertex with n legs, and thus n flavour indices ai, will have a vertex factor Va1...anm,R .

It will in general contain contributions from many different Lagrangian terms, but we treat

it as a single factor for the purposes of Feynman diagrams.

We can further organise the contents of an n-point O(pm) vertex by flavour structure,

i.e. all possible distributions of the n-flavour indices over the flavour splitting R:

Va1a2···anm,R (p1, p2 . . . , pn) =
∑

σ∈Sn/ZR

Fσ(R)Vm,R,σ(p1, p2, . . . , pn), (3.5)

where Vm,R,σ contains whatever kinematic factors come attached to Fσ(R). Due to the

derivatives, the kinematic factors Vm,R,σ are functions of the momenta pi of the interacting

particles. Here and in all other places, we treat all momenta as ingoing. Since Fσ(R) is

invariant under ZR, the kinematic factors must also have this symmetry, i.e.

Vm,R,σ(p1, p2, . . . , pn) = Vm,R,σ(pρ(1), pρ(2), . . . , pρ(n)) (3.6)

for any ρ ∈ ZR. Also, Bose symmetry implies that the act of rearranging the legs of the

vertex by any permutation ρ ∈ Sn must have the effect

Vm,R,σ◦ρ(p1, p2, . . . , pn) = Vm,R,σ(pρ(1), pρ(2), . . . , pρ(n)), (3.7)

where ◦ denotes composition of permutations. Specifically,

Vm,R,σ(p1, p2, . . . , pn) = Vm,R(pσ(1), pσ(2), . . . , pσ(n)), (3.8)

where Vm,R = Vm,R,id is called a stripped vertex factor.4 It contains all the necessary

4The word “stripped” is typical in the context of EFTs. For the analogous concept in perturbative QCD
(where “flavour” is replaced by “colour”), the word “primitive” is used instead; see e.g. [42, 43]. In older
literature, the word “dual” is common.
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information of the full vertex factor, but is only a kinematic factor with no flavour structure.

It can be “dressed” into a full vertex factor by the simple act of multiplying by Fid(R) and

then summing over all σ ∈ Sn/ZR.

A stripped vertex factor has the property of being flavour-ordered, since it is the

kinematic factor attached to Fid(R), where all flavour indices are sorted in ascending order.

Thanks to this, its explicit form can be derived by expanding the relevant Lagrangian

terms and discarding all terms where any flavour index appears out of order. This saves a

significant amount of work for the more complicated vertices.

Stripped vertices serve as the first ingredient in our method. In the following sections,

we treat diagrams and amplitudes along the same lines.

3.3 Stripped amplitudes

Like the vertices, we may organise the diagrams by their power-counting order and flavour

structure. The order can be determined by using Weinberg’s power-counting formula,

D = 2 + 2L+
∑
d

(d− 2)Nd, (3.9)

which states that a diagram containing L loops and Nd O(pd) vertices is O(pD) overall.

Due to the form (d − 2), a diagram may contain any number of O(p2) vertices without

changing its order.

As for the vertex factors, we may decompose the O(pm) n-point amplitude as

Ma1a2···an
m,n (p1, p2, . . . , pn) =

∑
R∈R(m,n)

∑
σ∈Sn/ZR

Fσ(R)Mm,R,σ(p1, p2, . . . , pn), (3.10)

whereMm,R,σ carries all kinematic factors, and R(m,n) contains all flavour splittings that

contribute to the amplitude. Its contents will become apparent when drawing diagrams.

The direct analogues of (3.6–3.8) hold also for Mm,R,σ, and we may similarly define

the stripped amplitude Mm,R with the property

MN,R,σ(p1, p2, . . . , pn) =Mm,R(pσ(1), pσ(2), . . . , pσ(n)). (3.11)

It is sufficient to compute the stripped amplitude, since summing over flavour splittings

and permutations,

Ma1a2···an
m,n (p1, p2, . . . , pn) =

∑
R∈R(N,n)

∑
σ∈Sn/ZR

Fσ(R)Mm,R(pσ(1), pσ(2), . . . , pσ(n)) , (3.12)

gives the full amplitude.

3.4 Flavour-ordered diagrams

Due to its relative simplicity, the stripped amplitude serves as the target of our methods.

Like the stripped vertex factors, it is flavour-ordered, so when calculating it, we may

discard all terms where two flavour indices appear out of order. We can derive further
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simplifications by studying how the flavour structures behave when two sub-diagrams are

joined by propagators. The NLSM Feynman rule for a propagator with momentum q is

q

a b
=

iδab

q2 + iε
, (3.13)

so the flavour structures are simply contracted by the delta. For SU(Nf ), the contraction

can be performed through the Fierz identity,

taijt
a
k` = δi`δjk −

1

Nf
δijδk`, (3.14)

where ijk` are the internal indices of the generators. Inside traces, the identity implies

〈Xta〉〈taY 〉 = 〈XY 〉 − 1

Nf
〈X〉〈Y 〉, (3.15)

〈XtaY ta〉 = 〈X〉〈Y 〉 − 1

Nf
〈XY 〉 (3.16)

for arbitrary X and Y . For future reference, we will name the first term on the right-hand

side the multiplet term and the second term (containing N−1f ) the singlet term. In U(Nf ),

the corresponding identities contain only the multiplet term.

For tree-level diagrams, (3.15) is the relevant identity. Its multiplet term preserves the

ordering of X and Y ; the singlet term does not, but we will ignore it for now and deal

with it in section 3.5. We then see that the stripped amplitude only gets contributions

from stripped vertex factors (if X or Y is not flavour-ordered, neither is XY ) that are

combined in ways that maintain their flavour-ordering. In a diagrammatic view, this is

rather intuitive to achieve; for instance, the following constitutes all the distinct ways to

assemble two 4-point vertices into an O(p2) 6-point diagram:

1

2

3 4

5

6 2

3

4 5

6

1 3

4

5 6

1

2

. (3.17)

The labels on the legs refer to external momenta and flavour indices. Flavour-ordering cor-

responds to having all indices in cyclic order around the diagram labelled counterclockwise;

we will keep this convention in the remainder. These three labellings give distinct kinematic

factors, e.g. they have distinct propagator momenta (p1 + p2 + p3)
2, (p2 + p3 + p4)

2, and

(p3 + p4 + p5)
2, respectively. Due to the symmetry of the diagram, the remaining three

cyclic permutations of the labels are not distinct from these three. All other labellings are

not flavour-ordered, and can be ignored.

For compactness, we will draw flavour-ordered diagrams with unlabelled legs. These

are defined as the sum over all distinct flavour-ordered ways to label them. Equivalently,

they can be defined as any flavour-ordered labelling, summed over ZR, and divided by the

factor needed to account for symmetry. For 4, 6 and 8 particles at O(p2), the flavour-
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ordered diagrams are

,

(3.18)

respectively. The second 6-point diagram is the sum of the three in (3.17). Stripped vertex

factors are completely symmetric under their respective ZR by virtue of (3.6), so single-

vertex diagrams always have only one distinct labelling. Therefore, the 4-point diagram

and the first 6-point diagram in (3.18) should not be summed over other labellings. The

8-point diagrams have 1, 8, 4, and 8 distinct labellings, respectively, as can be seen from

their symmetry. Note that since the order of the legs of a stripped vertex factor matters,

the last two diagrams are distinct.

Above O(p2), we begin to encounter flavour-split vertices, but they can be integrated

into the flavour-ordering routine. We still label the legs according to the identity permu-

tation, but instead of summing over cyclic permutations, we sum over ZR, and once again

only consider distinct labellings.

At higher orders, we also need to distinguish vertices of different order, which is done

by attaching a number to all vertices above O(p2). In order to distinguish vertices with

split flavour structures, we leave a gap in the vertex, so that each contiguous piece of a

diagram resides in a single trace. For instance, the 4-point O(p4) diagrams are

4 4 (3.19)

for R = {4} and R = {2, 2}, respectively. Neither diagram has more than one distinct

labelling, since they contain only a single vertex each. The four lines in the right diagram

are still kinematically connected, but are separated flavour-wise. Since there is a direct

correspondence between traces in a flavour structure and contiguous pieces of a diagram,

we will simply refer to the pieces as traces.

Some adjustment is needed when handling split diagrams. Since 〈X〉〈Y 〉 = 〈Y 〉〈X〉,
the traces may “float” to different positions around the same vertex. For instance,

4 4 (3.20)

are the same. By our conventions, the distinct labellings of this diagram are

1

2

3

5

4

6

4

1

2

4

6

5

3

4

1

2

5

3

6

4

4

1

2

6

4

3

5

4 (3.21)

Labels 1 and 2 are applied to the smaller trace (as per (3.2)), and no cycling is needed

due to the symmetry of the vertex. Labels 3456 must be summed over all four cyclings,
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since each cycling gives a different propagator. No other labelling is flavour-ordered; in

particular,
5

6

1

3

2

4

4 , (3.22)

which would be valid on a single-trace diagram, should not be counted, since it has flavour

structure Fid(4, 2) in disagreement with (3.2). Including it would be double-counting when

summing over all σ in (3.12), since it is obtained from (3.21) via a permutation in S6/Z{2,4}.
Extra caveats sometimes show up. For instance, the two O(p4) diagrams

4

4 (3.23)

emerge from different orientations of the same three vertices, but have completely different

flavour structure and properties. In the first diagram, the smaller trace should not be

cycled at all, and the larger trace only halfway, since it is symmetric (compare to the

O(p2) 6-point diagram). In the second diagram, all 4 · 4 combined cyclings of the two

traces are distict, but due to the symmetry of the diagram, swapping them, e.g.

1

3

2

4

7

5

6

8

4 ←→
5

7

6

8

3

1

2

4

4 (3.24)

does not produce a distinct kinematic structure and should not be counted.

In the O(p6) diagrams

4 4 6 , (3.25)

the component of ZR that swaps equal-size traces does play a role. In the first diagram,

we may place either 12 or 34 in the trace straddling the propagator, and we must sum over

both placements. In addition to that, we must sum over cyclings of the trace that straddles

the propagator. In the second diagram, the two smaller traces are equivalent under the

Z{2,2,2} symmetry of the vertex, and we should not sum over both ways of placing the

labels 12 and 34.

3.5 The singlet problem and its solution

The construction of flavour-ordered diagrams hinges heavily on the use of (3.15), or spe-

cifically the muliplet term, 〈XY 〉. The singlet term, 〈X〉〈Y 〉/Nf , threatens the notion that

the stripped amplitude is given by exactly the flavour-ordered diagrams. Consider the

diagrams
1

2

3 4

5

6 2

3

4 5

6

1 3

1

2 6

4

5

. (3.26)
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The first diagram is flavour-ordered according to both the multiplet and singlet terms.

The second diagram is also flavour-ordered according to our definitions, but gives the non-

flavour-ordered structure 〈234〉〈561〉 under the singlet. The third diagram is not flavour-

ordered, but the singlet gives the flavour-ordered structure 〈123〉〈456〉. Since the only

permutation contained in both Z{6} and Z{3,3} is id, the behavour of the singlet and mul-

tiplet terms is clearly very different and must be treated carefully.

There is, however, an elegant solution. As stated previously, the singlet term in (3.15)

is not present in U(Nf ). Therefore, in the U(Nf ) NLSM we may always do flavour-ordering

without singlet issues. We can extend this to SU(Nf ) by using its similarity to U(Nf ).

The U(Nf ) algebra differs from the SU(Nf ) algebra by a non-traceless generator t0

that commutes with all other generators. Due to the latter property, its associated field φ0

forms a U(1) singlet separate from the SU(Nf ) mutliplet φa. With this in mind, a more

elucidating form of (3.15) is

N2
f−1∑
a=1

〈Xta〉〈taY 〉 =

N2
f−1∑
a=0

〈Xta〉〈taY 〉 −
〈
Xt0

〉〈
t0Y

〉
, (3.27)

where we temporarily suppress Einstein summation. This expression suggests that a

SU(Nf ) propagator (left) represents a U(Nf ) propagator (right) minus the singlet propa-

gator, and explains our naming of the terms in (3.15). The N−1f is absorbed into t0 since

t0 = 1/
√
Nf .

Now, if we extend our Lagrangian-building field like

Φ̂(φ0, φ) = t0φ0 + Φ(φ), û(φ0, φ) = exp

(
iΦ̂

F
√

2

)
= exp

(
iφ0t0

F
√

2

)
u(φ), (3.28)

where u(φ) ∈ SU(Nf ) and û(φ0, φ) ∈ U(Nf ), we see that

Û = û2 ⇒ Û †∂µÛ =

(
i
√

2

F
√
Nf

)
∂µφ

0 + U †∂µU (3.29)

(remembering that U †∂µU is equivalent to uµ), and therefore

L̂2 =
1

2
∂µφ

0∂µφ0 +
F 2

4
〈uµuµ〉. (3.30)

At this order, the singlet decouples from the other fields and forms a free theory. Therefore,

no O(p2) vertex involves the singlet, so there is no distinction between U(Nf ) and SU(Nf )

amplitudes at this order, and we may ignore the singlet term in (3.15).

This observation was sufficient in [36], but we must handle the singlet problem beyond

O(p2). L4 and all higher-order Lagrangians introduce vertices that couple the singlet to

the other particles. However, a singlet propagator can only exist if both vertices at its ends

couple to it. Since this requires at least two vertices of at least O(p4), the diagram as a
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whole must be at least O(p6) to include such complications.5,6 Therefore, flavour-ordering

at O(p4) works with no other complications than the introduction of split vertices.

At O(p6) and above, the singlet term in (3.15) can not be avoided in SU(Nf ), but

the interpretation of (3.27) still holds. In order to build a SU(Nf ) amplitude, we first

work in U(Nf ) to build flavour-ordered diagrams using only the multiplet term. Then, we

construct all diagrams with singlet propagators in a similar fashion, maintaining flavour-

ordering independently. For instance, the full suite of O(p6) 6-point diagrams is

6 6 6 6

6 4 4 6 4 4 4 4

4 4 ,

(3.31)

including one singlet propagator, indicated by a dashed line. It implicitly includes a factor

of −N−1f , and its flavour structure is split {3, 3} over the propagator. All cyclings of the

two traces should be counted as distinct, since the vertices are invariant under Z4, not Z3.

By adding the singlet diagrams to the others, we get the stripped SU(Nf ) amplitude.

The singlet diagram contains all contractions that are flavour-ordered under the singlet

term, like the first and last diagram in (3.26). The decoupling of the singlet at O(p2) means

that these contributions must cancel in the amplitude at this order, which is not at all

obvious from the individual diagrams. Still, recasting the singlet terms as flavour-ordered

singlet diagrams is valid, as follows from the uniqueness of the stripped amplitude.

3.6 Uniqueness of stripped amplitudes

Above, we have blindly trusted the definition of the stripped amplitude as everything that

comes attached to the flavour-ordered structure Fid(R). If this definition is not unique,

flavour-ordering would not necessarily be valid, and we could not rely on our use of singlet

diagrams. However, we can show that the stripped amplitude is indeed unique, using a

generalisation of a method presented by [44] and adapted to flavour-ordering by [36].

The uniqueness hinges on the orthogonality relation

Fσ(Q) ·
[
Fρ(R)

]∗
= Nn

f

1 +O
(
N−2f

)
if Q = R and σ ≡ ρ (mod ZR),

O
(
N−γf

)
otherwise (γ ≥ 1; see below)

(3.32)

5If the singlet forms a loop, only one O(p4) vertex is necessary, but the loop itself increases the power
counting, so O(p6) is needed in this case as well.

6An interesting parallel can be seen in [42], where U(1) gluons similar to our singlets must be introduced
in perturbative QCD. While our singlets only emerge with at least two higher-order vertices, their U(1)
gluons cancel unless the diagram contains at least two quark lines. In general, there are several intriguing
analogies between the inclusion of quark lines in gluon scattering (where there are no higher-order vertices)
and the inclusion of higher-order vertices in the NLSM (where there are no quark lines).
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using the notation defined in section 3.1. The dot in the left-hand side indicates contraction

over all flavour indices. If Q 6= R, γ ≥ 1, and if σ 6≡ ρ(modZR), γ ≥ 2; therefore, the single-

trace version (i.e. that given in [36]) has O(N−2f ) as its second case. The more different

the flavour structures are, the larger γ is. The relation (3.32) is proven in appendix B

and states that any given flavour structure Fσ(Q) is orthogonal at leading order in Nf to

all other flavour structures whose permutations are not equivalent to σ, or whose flavour

splittings are not equal to Q.

In the context of stripped amplitude uniqueness, (3.32) can be applied as follows. In

analogy with (3.5) and (3.12), we write some arbitrary quantity X in the form

X a1···an =
∑
R∈R

∑
σ∈Sn/ZR

Fσ(R)Xσ,R, (3.33)

where R is some appropriate selection of flavour splittings. Then, we use the orthogonality

relation (3.32) to perform the projection

X a1···an [Fid(R)]∗ = Nn
f

[
Xid,R +O

(
1

Nf

)]
. (3.34)

This means that we can always project out the stripped X , and that any overlap with other

terms must come suppressed by at least N−1f . In a stripped amplitude of O(p4) or lower,

the stripped amplitude can not contain any powers of N−1f due to the decoupling of the

singlet, so there can be no overlap for arbitrary Nf . This proves that stripped amplitudes

are unique at O(p4) or below.

At higher orders, things are not as simple, since there are possibly many factors of N−1f .

This would allow mixing between different stripped X ’s, threatening to break uniqueness.

However, it can be resolved by expressing X a1···an as a polynomial in N−1f ,

X a1···an = X a1···an0 +
1

Nf
X a1···an1 +

1

N2
f

X a1···an2 + . . . (3.35)

such that each X a1···ani , and therefore also its stripped counterpart, is independent of N−1f .

We then apply the projection to each X a1···ani independently, and ignore the O(N−1f ) com-

pletely. Thus, stripped amplitudes, vertex factors, and other analogous quantities are

unique to all orders.7

The proof holds for general Nf , but for any specific Nf , there may be additional

relations between the generators that break the uniqueness. The Cayley-Hamilton relations

provide such relations for small Nf . However, we always assume that the relations have

been “exhausted” by removing terms from the Lagrangian, so that they do not affect the

uniqueness of stripped amplitudes.

This proof in this section has significant consequences. Most importantly, it guarantees

the correctenss of our method of flavour ordering with split traces and singlets: gathering

7This uniqueness is of course only up to a permutation in ZR, but since we sum over those in the
definition of the stripped quantity, they are unique for our purposes.
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all flavour-ordered pieces of the full amplitude is guaranteed to equal the unique stripped

amplitude. Also, uniqueness allows many properties of the full amplitude to carry over to

the stripped amplitude, as is discussed below.

A second consequence is worthy of note. The full amplitude of some O(pN ) n-particle

process is constructed from |R(N,n)| different stripped amplitudes. When summed over

permutations according to (3.12), the total number of flavour structures grows to

NN,n ∼
∑

R∈R(N,n)

|Sn|
|ZR|

, (3.36)

which is a very rapidly growing number — even at O(p2), N (2, n) ∼ (n−1)!. Since the fla-

vour structures are not truly orthogonal, the expression for the cross section of the process,

proportional to Ma1···an
N,n [Ma1···an

N,n ]†, grows in length as (NN,n)2. However, the expression

for the cross section contracts the flavour structures as in (3.32), which suppresses products

of non-equivalent flavour structures by a factor of N−1f for each difference (or N−2f in the

single-trace case). Therefore, in the limit Nf →∞, flavour structures are orthogonal, and

the cross section only grows as NN,n. Even with finite Nf , most cross-terms will be heavily

suppressed, and can most likely e ignored.

An alternative approach would be to construct other bases for flavour space that are

more orthogonal than the trace bases used here, as is done in perturbative QCD by [45].

Such methods have so far not been applied in the present context.

4 NLSM amplitudes

In this section, we introduce and generalise several concepts related to NLSM amplitudes

and flavour-ordering.

4.1 Adler zeroes and soft limits

In any effective field theory emerging from the spontanous beaking of a global symmetry,

the amplitude possesses the so-called Adler zero,

lim
ε→0
Ma1···an(p1, . . . , εpi, . . . , pn) = 0, (4.1)

for any i [12, 46]. The approach to zero will generally go as εσ, where the soft degree σ ≥ 1

can be used to classify and construct EFTs [13, 47]. The NLSM has σ = 1. Due to the

orthogonality of flavour structures and the uniqueness of stripped amplitudes, Adler zeroes

may only exist in the full amplitude if they also exist, with the same soft degree, in the

stripped amplitudes. Therefore, (4.1) and any statement relying on it can equally well be

applied to the stripped amplitudes.

The Adler zeroes may be used as a starting point to construct amplitudes through

recursion relations [11, 15]. For our purposes, however, their main use is in validating the

correctness of complicated stripped amplitudes. Since far from every term in the amplitude

is proportional to pi, the Adler zero must manifest itself through intricate cancellations.
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Therefore, any error in the amplitude is extremely likely to give a finite right-hand side in

(4.1).

Beside the Adler zeroes, there also exists the double soft limit, where two momenta

are sent to zero at the same rate. It turns out that the double soft limit of any (n + 2)-

particle amplitude can be expressed in terms of n-particle amplitudes with the soft particles

removed; for the NLSM, the specific form is

lim
ε→0
Maba1···an

m,n+2 (εp, εq, p1, . . . , pn) =

− 1

4F 2

n∑
i=1

fabcfaidc
pi · (p− q)
pi · (p+ q)

Ma1···a(i−1)da(i+1)···an
m,n (p1, · · · , pn). (4.2)

This was conjectured in [48] and proven in [36]. Like the Adler zero, it can be projected

to a relation for stripped amplitudes, although the projection is not entirely trivial. The

result for single-trace flavour structures is given in [36]. We derive the counterpart for

general flavour structures in appendix C, with the result being as follows. At any order m

in the power counting and for any flavour split R ∈ R(m,n+ 2), the double soft limit

lim
ε→0
Mm,R(p1, . . . , pi−1, εpi, . . . , εpj , pj+1, . . . , pn+2) (4.3)

is nonzero if the indices i− 1, i, j and j + 1 are consecutive and lie within the same trace;

we will call this condition C. It is also nonzero if the indices can be made to satisfy C by

applying a permutation in ZR and possibly swapping i and j. In all other cases, the double

soft limit is zero.

Since Mm,R is invariant under ZR, we can without loss of generality assume that C
holds whenever the double soft limit is nonzero. Assuming this, the double soft limit is

lim
ε→0
Mm,R(p1, . . . , εpi, εpj , . . . , p(n+2))

=
1

4F 2

(
p(j+1) · (pi − pj)
p(j+1) · (pi + pj)

−
p(i−1) · (pi − pj)
p(i−1) · (pi + pj)

)
Mm,R′(p1, . . . , p(i−1), p(j+1), . . . , p(n+2)),

(4.4)

where R′ ∈ R(m,n) is R with the location of the soft particles removed and j = i + 1.

The result, which generalises that given in [36], is quite remarkable: for properly chosen

i, j, the double soft limit amounts to removing the soft particles from the amplitude and

multiplying by a simple kinetic factor. The factor is similar to those that arise in IR

divergences, which is understandable — both arise from propagators going on-shell in the

soft (IR) limit.

4.2 Generalised Mandelstam invariants

In order to express stripped amplitudes in a way that naturally includes on-shellness and

conservation of momentum, we will employ bases of generalised Mandelstam invariants in
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the form

sijk··· = (pi + pj + pk + . . .)2, (4.5)

In this notation, the standard 4-particle Mandelstam invariants are

s = s12 = s34, t = s13 = s24, u = s23 = s41. (4.6)

Since s + t + u = 0, this basis is overcomplete, and one element can be removed. We

will generally use bases where ijk . . . are consecutive, so we choose to keep {s, u} as the

4-particle basis.

For n particles, the products of momenta are related to the invariants with consecutive

indices through

2pi · pi+1 = si(i+1),

2pi · pi+2 = si(i+1)(i+2) − si(i+1) − s(i+1)(i+2),

j > i+ 2 : 2pi · pj = si···j − si···(j−1) − s(i+1)···j + s(i+1)···(j−1).

(4.7)

Based on this, a complete basis of invariants for n = 6 is

B{6} =
{
s12, s23, s34, s45, s56, s61, s123, s234, s345

}
, (4.8)

where s456 etc. are not needed due to conservation of momentum in the form

si···(i+k−1) = s(i+k)···(i−1), (4.9)

with indices cycling around from n to 1. The form of B{6} can be carried on to any even

n, giving

B{n} =
{
s12, s23, . . . , sn(n−1), sn1, s123, s234, . . . , sn12, . . . ,

s12···(n/2), . . . , s(n/2−1)···(n−1)
}
. (4.10)

This contains n(n−3)/2 invariants, which is also the number of independent products that

can be formed from {p1, . . . , pn} with all p2i = 0.8 Note that all invariants have consecutive

indices.

These bases are only linearly independent in sufficiently high spacetime dimensions D.

If D < n+ 1, the Gram determinant gives relations among the basis elements. In practice,

these relations are so algebraically messy that we have found it simpler to always work in

arbitrary D.

Mandelstam invariants have further benefits beyond taking care of on-shellness and

conservation of momentum. In an n-point O(p2) single trace flavour-ordered tree diagram,

all propagators carry a momentum q such that q2 ∈ B{n}. Therefore, O(p2) stripped amp-

litudes will never contain a denominator with a sum of several invariants, making their

8There are n(n + 1)/2 ways to form products of pairs of pi, i ∈ {1, . . . , n}. Of these, n vanish due to
p2i = 0. Conservation of momentum implies that pn =

∑n−1
i=1 pi, which gives n linear combinations among

the remaining products, reducing the number of independent ones to n(n+ 1)/2− 2n = n(n− 3)/2.
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algebraic handling simpler. This is not true for diagrams with multi-trace flavour struc-

tures. It is also not possible to find a different basis that contains all squared propagator

momenta in the general case; for instance, the set of all possible q2 under R = {2, 6} is not

linearly independent.

Another use of Mandelstam invariants is the shortening of stripped amplitudes. As a

consequence of invariance under ZR, any stripped amplitude can be written in the form

Mm,R(p1, . . . , pn) = (simpler expression) + [ZR], (4.11)

where we use a shorthand for the sum over ZR, generalising the familiar idiom “+cycl.”.

The simpler expression is rather obvious for simple amplitudes, but for more complicated

cases, it is an enormous aid to readability.

Any stripped amplitude can be simplified as above by separating it into simple terms,

separating the terms into cosets under ZR, and picking a single representative from each

coset. The “simpler expression” in (4.11) will then be the sum of the representatives. For

R = {n}, this works because for any sij··· ∈ B{n} and σ ∈ Z{n}, applying σ to the indices

of sij··· yields another element in B{n}. Thus, B{n} can be said to be closed under Z{n}.
However, the basis given in (4.10) is not closed under any ZR with R 6= {n} (with the sole

exception of R = {2, 2}), so the separation into cosets fails. Simplifying general amplitudes

therefore requires either painstaking manual work, or a Mandelstam basis that is closed

under ZR. We have no general method of finding such bases. In appendix D, we present

closed bases for Z{2,4}, Z{3,3} and Z{2,2,2}. These cover all flavour structures that appear

for n ≤ 6.

4.3 Diagram generation

For most amplitudes presented here, the number of diagrams is small enough that they are

easily found by hand, but above a dozen or so diagrams, this becomes a slow and error-

prone process. We therefore automated the process by designing a program called fodge

(flavour-ordered diagram generator) written in C++.9 It produces TikZ code for drawing

the diagrams, and generates the input to a set of form procedures that compute the

amplitudes.10 The same procedures were used with manual input for computing simpler

amplitudes. Inspiration was taken from the diagram generator used in [51, 52].

The diagram generation works recursively. A list of all O(pM ) N -point diagrams can

be generated by generating all O(pm) n-point diagrams for m ≤ M and n ≤ N − 2, and

then listing all ways to attach a O(p2+M−m) (2+N−n)-point vertex to their external legs.

Adding a list of O(pM ) N -point single-vertex diagram and removing duplicates completes

the list. The number of duplicates can be reduced by restricting m and n.

The number of independent labellings on each diagram must then be determined.

Representing diagrams in a way that shows their symmetries turns out to be very difficult

when complicated flavour structures are involved. This was not entirely successfully tried

9The source code of fodge can be found at https://github.com/mssjo/fodge.
10The form procedures can be found at https://github.com/mssjo/flavour-order. For form itself,

see [49, 50].
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in the original fodge used in [37]. Here, we take a different approach: each diagram is

associated with all flavour-ordered labellings of its external legs that give unique kinematic

structures. This removes the need to explicitly consider its symmetries; internally, the

diagrams can be represented in whatever way is convenient.

As is pointed out below (3.17), a kinematic structure is uniquely determined by the

propagator momenta it contains. It is easy to see that this holds for any O(p2) diagram. At

higher orders, it is sufficient to add the order of the vertices at the ends of each propagator.

The flavour splits of the vertices are not needed if the overall flavour split of the diagram

is provided. For singlet diagrams, we must also specify how the vertex is cycled relative to

the singlet propagator, by writing down the momentum carried by a vertex leg adjacent

to the propagator. In general, any kinematic factor is uniquely determined by listing all

vertices and the momenta carried by their legs, but this can be shown to reduce to these

simpler rules when diagrams are flavour-ordered.

Thus, fodge generates all diagrams of a given order and size, equips each diagram with

an arbitrary flavour-ordered labelling, and determines the kinematic factor as described

above. ZR is then applied to generate all other labellings, but only a subset that gives

distinct kinematic factors is kept. If the choice of subset is consistent, equivalent diagrams

will always give an identical list of kinematic factors, so duplicates are easily removed.

Knowing the labellings also makes the diagram generation more efficient. There is

no need to attach a vertex to several legs that are equivalent to each other under the

symmetries. By dividing the set of labels into cosets under ZR, it is sufficient to attach

vertices to legs that, in one of the distinct labellings, carries a coset representative as its

label. This reduces the number of generated duplicates.

5 Explicit amplitudes

Using the methods developed in the previous sections, we have computed several stripped

NLSM amplitudes, several of which have not previously been determined. These we discuss

in this section.

5.1 4-point amplitudes

These amplitudes are by far the simplest, since their tree-level diagrams contain no propa-

gators and only carry two flavour structures ({4} and {2, 2}), or only one in the O(p2)

case. At O(p6) and above, they only receive contributions from the Lagrangian terms with

no more than four uµ’s, which is a tiny subset of the total Lagrangian.

The O(p2) 4-point amplitude is given by a single diagram and a simple stripped amp-

litude,

− iF 2M2,{4} =
t

2
, (5.1)

where t is the Mandelstam invariant (p1 + p3)
2. We have pulled factors of i and F over

to the left-hand side for clarity. The only independent O(p2) kinematic structure that is

invariant under Z{4} is t, so the form of the right-hand side could have been guessed based

on symmetry.
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If we plug (5.1) into (3.12) and apply some SU(2) group algebra, we recover the familiar

Nf = 2 amplitude

Mabcd
2,4 (s, t, u) =

−4i

F 2

[
sδabδcd + tδacδbd + uδadδbc

]
(5.2)

with the Mandelstam invariants defined as in section 4.2.

The O(p4) 4-point amplitude consists of the two diagrams

4 − iF 4M4,{4} = 2L3(u
2 + s2) + 4L0t

2, (5.3)

4 − iF 4M4,{2,2} = 8L1s
2 + 4L2(t

2 + u2), (5.4)

which includes the simplest example of a flavour split. There are now two independent Z4-

invariant kinematic structures, t2 and s2+u2, and likewise two independent Z{2,2}-invariant

ones, s2 and t2 + u2. All four appear equipped with one LEC each. The full amplitude

is analogous to (5.2), but with various linear combinations of the LECs and Mandelstam

variables in place of s, t and u. The full amplitude agrees with the known results, see [7]

and references therein.

The O(p6) 4-point amplitude, like its O(p4) analogue, has two diagrams,

6 − iF 4M6,{4} = −L6,3t(s
2 + u2)− 2L6,4t

3, (5.5)

6 − iF 4M6,{2,2} = −2L6,1(t
3 + u3) +

2

3
L6,2(s

3 + t3 + u3). (5.6)

As for O(p4), there are two independent Z4-invariant kinematic structures, t3 and t(s2+u2),

and two independent Z{2,2}-invariant ones, s3 and s(t2 +u2). These four correspond to the

four LECs — s3 + t3 + u3 is a linear combination of s3 and s(t2 + u2). The full amplitude

agrees with the result in [7].

The O(p8) amplitude, like its lower-order analogues, has two diagrams,

8 − iF 4M8,{4} = L8,4s
2u2 +

1

2
L8,5t

2(s2 + u2) + L8,6t
4, (5.7)

8 − iF 4M8,{2,2} = L8,1s
2(t2 + u2) + L8,2(t

4 + u4) + 2L8,3t
2u2, (5.8)

There are now three independent Z4-invariant kinematic structures, t4, t2(s2 + u2) and

s2u2, and correspondingly three for Z{2,2}. This is reflected in the six LECs.

Similarly, M10,{4} will be a linear combination of s5, s3tu and st2u2, and M10,{2,2}
will be a linear combination of t5, t3us and tu2s2, since these are the only independent

O(p10) kinematic structures that are invariant under Z{4} and Z{2,2}, respectively. The

coefficients will be linear combinations of the LECs of the terms in L10 that only contain
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four uµ’s. These terms, along with the rest of L10, have not yet been studied. The same

pattern can be applied to O(p12) and beyond.

Note that the above discussion is fully compatible with section 5 in [41] where we have

two functions with properties B(s, t, u) = B(u, t, s) and C(s, t, u) = C(s, u, t). Independent

combinations in B at order p2n are made from tn−2i(s− u)2i and in C from sn−2i(t− u)2i.

5.2 The O(p2) 6- and 8-point amplitudes

The leading order in the power counting offers a relatively simple playground for flavour-

ordering, free from splittings and singlets. It is relatively well explored, and the amplitudes

presented here were also calculated in [36] using different methods.

The 6-point amplitude is given by the diagrams

. (5.9)

Each diagram represents the sum of all distinct labellings of its legs, as described in sec-

tion 3. The amplitude is

−4iF 4M2,6 = s12 + s23 + s34 + s45 + s56 + s61

− (s12 + s23)(s45 + s56)

s123
− (s23 + s34)(s56 + s61)

s234
− (s34 + s45)(s61 + s12)

s345
,

(5.10)

which suggests the simplified form as defined in (4.11)

− 4iF 4M2,6 =

{
s12 −

1

2

(s12 + s23)(s45 + s56)

s123

}
+ [Z6], (5.11)

where [Z6] indicates summation over all cyclic permutations. Note the factor of 1/2, which

expresses that the second term has twofold symmetry under rotation, a trait that is shared

by the second diagram above.

The 8-point amplitude is given by the diagrams

, (5.12)

and its stripped amplitude is, in a similarly simplified form,

− 8iF 6M2,8 =

{
4s12 + s1234

2
− (s12 + s23)(s45 + s56 + s67 + s78 + s4567 + s5678)

s123

+
1

2

(s12 + s23)(s1234 + s4567)(s56 + s67)

s123s567

+
(s12 + s23)(s1234 + s45)(s67 + s78)

s123s678

}
+ [Z8]. (5.13)
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The analogous 10- and 12-point amplitudes, the second of which has not been determ-

ined before, are presented in appendices E.2 and E.3.

5.3 The O(p4) 6-point amplitude

The calculation of this amplitude hinges decisively on the use of split-trace flavour ordering.

It was arrived at independently in a different form by [15] using recursion relations. Our

result agrees with theirs. The amplitude is given by the four diagrams

4 4 4 4 . (5.14)

Note that unlike its O(p2) counterpart, the third diagram is not symmetric due to the

asymmetric placement of vertices. The amplitude has a single-trace and a two-trace part.

The single-trace stripped amplitude is

− iF 6M4,{6} = L3

{
s12 (s12 + s34 + s45)−

(s12 + s23)
(
s245 + s256

)
s123

}
+ [Z6]

+ 2L0

{
s12 (s12 + s34 + 2s45) + s123 (s612 − s61)−

(s12 + s23) (s45 + s56)
2

s123

}
+ [Z6]

(5.15)

In order to find the simplified form of the two-trace part, it is extremely helpful to have a

closed Mandelstam basis. In terms of the closed basis B{2,4} = {t1, . . . , t9} of (D.1), it is

− iF 6M4,{2,4} =
L1

2

{
t1
[
t1 + 2t2 + t3 − 3t5

]
+

(t2 + t3 + t4)
2
[
t3 − 2t5

]
2t1

}
+ [Z{2,4}]

+
L2

8

{
t1

[
t1 + 2t2 +

t3
2
− 3t5

]
+ 4t27 − 2t29

+

[
(t2 + t3 + t4)

2 + 4(t7 + t8 + t9)
2
] [
t3 − 2t5

]
2t1

}
+ [Z{2,4}]. (5.16)

Note that the summation over cyclic permutations is replaced by summation over Z{2,4}.

5.4 Further amplitudes

We have computed the O(p6) 6-point amplitude, and using the closed Mandelstam bases

presented in appendix D, it is possible to present its reduced form given in appendix E.1.

The O(p6) divergent part is given explicitly in the supplementary material [38] as well as

the O(p8) expression. The O(p2) 10-point is given in appendix E.2. Finally the O(p2)

12-point amplitudes is given in appendix E.3.

We have also computed several amplitudes whose expressions are too large to overview.

They have been verified by checking their Adler zeroes, and in some cases by running brute-

force Feynman diagram calculations. Beyond these amplitudes, we have generated the
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flavour-ordered diagrams of many more amplitudes using our program fodge, described

in section 4.3. Here, we only summarise the number and general properties of the diagrams

to give an idea of how the complexity scales. The summary is given in table 1.

For all entries labelled “Yes” in table 1 that are not included in the main text, the

flavour-ordered diagrams are given in the supplementary material [38]. Most of the amp-

litudes themselves are too long to be practically written down, but they can be generated

by using the freely available programs described in section 4.3.

O(pN ) n
Number of diagrams

Computed?
SU(Nf ) U(Nf ) SU(3) U(3) SU(2) U(2)

O(p2)

4 1 Yes (5.1)
6 2 (same as SU(Nf )) Yes (5.11)
8 4 Yes (5.13)
10 16 Yes (E.10)
12 73 Yes∗ (E.11)
14 414 No

O(p4)

4 2 1 1 Yes (5.4)
6 4 (same as SU(Nf )) 2 2 Yes†∗ (5.15-5.16)
8 18 8 8 Yes†∗ (E.2-E.9)
10 90 43 43 Yes∗

12 577 283 283 No

O(p6)

4 2 2 2 2 1 1 Yes (5.6)
6 10 9 9 8 4 3 Yes†∗

8 50 45 48 43 18 14 Yes∗

10 360 318 348 316 129 98 No

O(p8)
4 2 2 2 2 1 1 Yes∗ (5.8)
6 11 10 10 9 4 3 Yes∗

8 105 85 97 77 34 21 No

Table 1. Summary of the number of O(pN ) n-point diagrams. The SU(Nf ) column shows the
general count, and the U(Nf ) column shows the count without singlet diagrams. The SU(3) and
SU(2) columns show the number of distinct diagrams left when some Lagrangian terms have been
eliminated using the Cayley-Hamilton relation as discussed in section 2.1. Note that the distinction
for Nf = 2 assumes we remove the L1 and L2 term and emerges first at O(p4). For Nf = 3
it emerges first at O(p6). The distinction between SU and U also emerges first at O(p6). The
rightmost column states whether an amplitude has been computed by us, and provides references to
the explicit amplitudes when possible. Amplitudes marked with an asterisk have to our knowledge
not been calculated before; the O(p4) 6-point amplitude was recently independently reproduced
by [15]. Amplitudes marked with a dagger have been verified with a brute-force Feynman diagram
calculation; the remainder rely only on Adler zeroes for verification.

In the table, we note that the number of diagrams grows more rapidly with n (the

number of particles) than with N (the power-counting order). Especially when N > n, the

number of new diagrams is very small. This is also reflected in the computational effort

needed: the O(p2) 10-point, O(p6) 8-point and O(p8) 6-point amplitudes took approxim-

ately 10 minutes each to calculate with form [49, 50], while the O(p4) 10-point amplitude

took almost and hour and the O(p2) 12-point amplitude took over 2 days. At high N ,
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the calculation of vertex factors takes significant time, while at high n, the conversion to

Mandelstam variables is very time-consuming due to the large dimension of the kinematic

space.

As the table shows, we have calculated all amplitudes with less than 100 diagrams,

excluding N ≥ 10, where the Lagrangian is not yet known. If we decide to push the frontier

of large n further in the future, we expect the required computational effort to be severe.

6 Conclusions

In this work we have extended flavour ordering methods to include multiple traces and

higher orders in derivatives. The uniqueness of the method relies on the extended orthogo-

nality relation (3.32). We implemented the constraints in a diagram generator and used

this then to calulate a number of amplitudes in the NLSM with more legs and derivatives

than obtained previously.

Our methods are fairly constrained in which models they can be applied to, since they

hinge on the existence of flavour structures and the contraction identity (3.15). On the other

hand, they are readily extended to extremely high-order and many-particle amplitudes.

They may also have some applicability to loop diagrams and massive particles under χPT.

A tentative discussion of these possibilities can be found in [37].

Flavour-ordering serves as an enhancement of the standard diagrammatic approach,

and as such is rather brute-force in nature. This contrasts with the recursive approach

developed in [11], in which subtler properties such as soft limits play a much clearer

role. These methods can also be applied to a wider range of models. The downside is

that practical calculations require algebraic manipulations that are not entirely obvious.

Flavour-ordering calculations can be very extensive, but are mathematically trivial and eas-

ily automated. Further developments of recursion relations in [15] have offset the algebraic

difficulties, but soft recursion retains the fundamental limitation that recursive calculation

of an O(pm) n-point amplitude requires n > m. Therefore, the O(p6) 6-point can not be

reached by such means, and must be supplied as a seed amplitude if O(p6) amplitudes are

to be calculated for more than 6 particles. For this, our methods seem to be the only viable

option other than brute-force Feynman diagrams.

Acknowledgements

We thank Malin Sjödahl for correcting an earlier version of (3.32). KK enjoyed kind

hospitality at Lund University while most of this work was realized. This work is supported

in part by the Swedish Research Council grants contract numbers 2015-04089 and 2016-

05996, by the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme under grant agreement No 668679, and the Czech

Government projects GACR 18-17224S and LTAUSA17069.

– 25 –



A The NNLO NLSM Lagrangian

The NNLO χPT Lagrangian LχPT6 was first determined in [40]. It has 21 terms that do not

vanish when external fields are removed, but this turns out to be an overcomplete basis for

the NLSM. In tandem with the NNNLO χPT Lagrangian L8 in [41], the authors of that

paper produced a version of LχPT6 where removing external fields yields a minimal NLSM

Lagrangian with 19 terms. It was not published there, but we present it in table 2. The

first 135 terms of the Lagrangian in [41] constitute a minimal NLSM Lagrangian L8.
The Lagrangian of [40] is expressed as

LχPT6 =

112∑
i=1

KiYi, (A.1)

where Ki are LECs and Yi are monomials in the fields. Terms 1–6 and 49–63 remain when

external fields are removed. All monomials except Y1, Y2 and Y6 correspond directly to

monomials in the minimal NLSM Lagrangian

L6 =
19∑
i=1

L6,iO6,i, (A.2)

where L6,i are LECs and O6,i are monomials. The remaining Yi can be decomposed in

terms of O6,i using the relations described in [41], which for the NLSM simplify to

∇µuν = ∇νuµ, ∇µuµ = 0,

[∇µ,∇ν ]uρ =
1

4
[[uµ, uν ], uρ].

(A.3)

This yields the relations

Y1 = −3O6,3 +O6,4 +O6,15 − 2O6,16 +
1

2
O6,17 +O6,18 −

1

2
O6,19, (A.4)

Y2 = −8O6,2 + 2O6,8 − 2O6,9, (A.5)

Y6 = 4
O6,2 −O6,1

3
− 2
O6,9 −O6,8

3
− 2
O6,12 −O6,11

3
. (A.6)

Furthermore, some factors of 2 appear since [40] includes higher derivatives in terms of

hµν ≡ ∇µuν +∇νuµ, which is just 2∇µuν in the NLSM.

A.1 Renormalisation

NNLO χPT was renormalised in [53], based on [40]. For renormalisation in the NLSM,

we transfer those results to the minimal Lagrangian given in table 2. For details on the

renormalisation, see [53] and sources therein. At NLO, it is performed by splitting the

LECs as

Li = (cµ)d−4 [Lri (µ, d) + ΓiΛ] , Λ =
1

16π2(d− 4)
. (A.7)
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Monomial
Number in L6 Relation to [40]

SU(Nf ) SU(3) SU(2)

〈uµ∇νuρ〉〈uµ∇νuρ〉 1 1 1 K4 − 4
3K6

〈uµ∇νuρ〉〈uρ∇µuν〉 2 2 −8K2 + 4
3K6

〈uµ∇νuµuρ∇νuρ〉 3 3 2 4K5 − 3K1

〈uµ∇νuρuµ∇νuρ〉 4 4 3 4K3 +K1

〈uµuµ〉〈uνuν〉〈uρuρ〉 5 K51

〈uµuµ〉〈uνuρ〉〈uνuρ〉 6 K56

〈uµuν〉〈uνuρ〉〈uρuµ〉 7 K63

〈uµuµ〉〈uνuνuρuρ〉 8 5 K50 + 2K2 + 2
3K6

〈uµuµ〉〈uνuρuνuρ〉 9 6 K57 − 2K2 − 2
3K6

〈uµuµuν〉〈uνuρuρ〉 10 7 K53

〈uµuν〉〈uµuνuρuρ〉 11 K55 + 2
3K6

〈uµuν〉〈uµuρuνuρ〉 12 K62 − 2
3K6

〈uµuνuρ〉〈uµuνuρ〉 13 K59

〈uµuνuρ〉〈uµuρuν〉 14 K61

〈uµuµuνuνuρuρ〉 15 8 4 K49 +K1

〈uµuµuνuρuνuρ〉 16 9 5 K54 − 2K1

〈uµuµuνuρuρuν〉 17 10 K52 + 1
2K1

〈uµuνuµuρuνuρ〉 18 11 K60 +K1

〈uµuνuρuµuνuρ〉 19 12 6 K58 − 1
2K1

Table 2. The terms of the NNLO NLSM Lagrangian L6. The numbering of the terms is taken
from material produced in tandem with [41]; the choice of which terms to keep at small Nf (see
section 2.1) is carried over from [40]. The rightmost column shows how Ki combine to give L6,i

when the overcomplete Lagrangian is decomposed.

The measurable LECs are given by Lri (µ, d) as d→ 4, with

Γ0 =
Nf

48
, Γ1 =

1

16
, Γ2 =

1

8
, Γ3 =

Nf

24
. (A.8)

Likewise, at NNLO the LECs are split as

L6,i =
(cµ)2(d−4)

F 2

[
Lr6,i(µ, d)− Γ

(2)
i Λ2 −

(
Γ
(1)
i + Γ

(L)
i (µ, d)

)
Λ
]
. (A.9)

The Γ’s for the corresponding renormalisation of the Ki are given in [53]. Using the

rightmost column of table 2, the renormalisation of the minimal L6 is given in table 3.

A.2 Explicit divergences

In analogy with (A.7), we define

M4,R = (cµ)d−4
[
Mr

4,R(µ, d) +M(1)
4,RΛ

]
, (A.10)

whereM4,R is some O(p4) stripped amplitude,Mr
4,R(µ, d) is the corresponding measurable

amplitude expressed in terms of Lri (µ, d), and M(1)
6,R is its divergence.

– 27 –



i Γ
(2)
i 16π2Γ

(1)
i Γ

(L)
i

1 − 5
72Nf − 19

864Nf −4
3L

r
3 − 4Lr0

2 −5
9Nf

1
864Nf −16

3 L
r
3 − 8

3L
r
0 − 8

3NfL
r
2 − 8NfL

r
1

3 − 5
16 − 5

96N
2
f − 1

96 + 35
6912N

2
f −25

6 L
r
2 − 5

3L
r
1 − 23

12NfL
r
3 − 7

6NfL
r
0

4 5
16 + 5

288N
2
f

1
96 − 17

6912N
2
f

25
6 L

r
2 + 5

3L
r
1 + 3

4NfL
r
3 + 1

6NfL
r
0

5 1
64

5
256

1
4L

r
2

6 − 1
32

3
128 −1

2L
r
2

7 −1
8 − 1

32 −2Lr2
8 1

24Nf
25
576Nf

17
12L

r
3 + 13

6 L
r
0 + 2

3NfL
r
2 − 1

2NfL
r
1

9 − 1
96Nf − 5

1152Nf −13
24L

r
3 − 29

12L
r
0 + 1

12NfL
r
2

10 − 1
64Nf − 5

256Nf −5
4L

r
3 + Lr0

11 − 5
144Nf − 1

1728Nf
2
3L

r
3 + 4

3L
r
0 − 2

3NfL
r
2

12 − 13
144Nf − 53

1728Nf −7
6L

r
3 − 19

3 L
r
0 − 1

3NfL
r
2

13 − 1
192Nf

65
2304Nf −3

4L
r
3 + Lr0

14 7
192Nf − 23

2304Nf
5
4L

r
3 + Lr0

15 5
48 + 1

144N
2
f − 7

576 − 25
6912N

2
f

5
6L

r
2 + 5

3L
r
1 + 1

6NfL
r
3 + 1

3NfL
r
0

16 − 5
24 − 1

96N
2
f − 19

576 + 5
1152N

2
f −2

3L
r
2 − 16

3 L
r
1 − 1

4NfL
r
3 − 1

6NfL
r
0

17 5
96 − 1

48N
2
f

43
576 + 49

13824N
2
f

1
4L

r
2 + 7

6L
r
1 − 2

3NfL
r
3 − 2

3NfL
r
0

18 5
48 + 1

64N
2
f − 67

576 − 7
1728N

2
f

1
6L

r
2 + 3Lr1 + 17

24NfL
r
3 + 1

12NfL
r
0

19 − 5
96 − 1

144N
2
f

25
288 + 5

4608N
2
f − 7

12L
r
2 − 1

2L
r
1 − 1

3NfL
r
3

Table 3. The coefficients used to renormalise L6 as per (A.9). Lr
i are the renormalised LECs of

L4 as per (A.7-A.8). Note how the highest power of Nf in Γ
(1,2)
i is 3 minus the number of traces

in O6,i.

Using this notation and (A.8), the divergence of the O(p4) 4-point amplitude (5.4) is

− iF 4M(1)
4,{4} = Nf

s2 + t2 + u2

12
, −iF 4M(1)

4,{2,2} =
s2 + t2 + u2

2
. (A.11)

These kinematic terms are highly symmetric, more so than the amplitude itself. The

divergences of the 6-point amplitude (5.15-5.16) are

−iF 6M(1)
4,{6} =

Nf

12

{
s12

(
s12 + s34 +

3s45
2

+ s234

)
− s123s234

2

− (s12 + s23)
(
s245 + s256

)
+ s12s23 (s45 + s56)

s123

}
+ [Z{6}]

−iF 6M(1)
4,{2,4} =

1

64

{
3

(
t21 + 2t1t2 +

t1t3
2
− 3t1t5

)
+ 4t27 − 2t29

+
1

t1

[
3 (t2t3t4 − 2t2t3t5 − 2t2t4t5 − 2t3t4t5) + 3t23(t2 + t4)

+
3(t3 − 2t5)

2

(
T 2
234 + 2T 2

789

)]}
+ [Z{2,4}].

(A.12)
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We use the closed basis (D.1), and Tijk = ti + tj + tk.

An O(p6) analogue of (A.11) can be formed based on (A.9):

M6,R =
(cµ)2(d−4)

F 2

[
Mr

6,R(µ, d)−M(2)
6,RΛ2 −

(
M(1)

6,R +M(L)
6,R(µ, d)

)
Λ
]
, (A.13)

where M(2,L)
6,R will gain contributions from both (A.7) and (A.9).

Using this notation and the above renormalisation, the divergences of the O(p6) 4-point

amplitude are (5.6) are

−iF 4M(1)
6,{4} =

1

72

(
2t3 − s3 − u3

)
+

N2
f

5184

[
8t3 + 35(s3 + u3)

]
,

−iF 4M(2)
6,{4} =

5

12

(
2t3 − s3 − u3

)
−

5N2
f

72

(
s3 + u3

)
,

−iF 4M(L)
6,{4} = 10

2Lr1 + 5Lr2
9

(
2t3 − s3 − u3

)
+

2NfL
r
0

9

[
2t3 − 7(s3 + u3)

]
− NfL

r
3

9

[
2t3 + 23(s3 + u3)

]
, (A.14)

−iF 4M(1)
6,{2,2} =

Nf

1296

[
s3 + 58(u3 + t3)

]
,

−iF 4M(2)
6,{2,2} = −5Nf

108

[
8s3 + 5(u3 + t3)

]
,

−iF 4M(L)
6,{2,2} = −16Nf

3Lr1 + Lr2
9

(
s3 + t3 + u3

)
+

2Lr0
9

[
23(u3 + t3)− 8s3

]
− 8Lr3

9

(
u3 + t3 + 4s3

)
, (A.15)

with the dependence on (µ, d) left out for compactness. These expressions do not share

the simplicity and symmetry of their O(p4) counterparts. The analogous divergences of

the O(p6) 6-point amplitude (appendix E.1) are given in [38].

B The orthogonality of flavour structures

Here, we prove the orthogonality relation (3.32) used in section 3.6 to prove the uniqueness

of stripped amplitudes. It relies on notation defined in that and previous sections.

Let σ, ρ ∈ Sn be two permutations, and Q,R be two n-index flavour splittings. We

use these to build two flavour structures, and begin by focusing on the trace in Fσ(Q) that

contains aσ(n) and the trace in Fρ(R) that containis aρ(m), where we have picked m such

that ρ(m) = σ(n). If there are more traces present, we leave them as passive “spectators”

for the time being. Then, we use (3.15) to contract aσ(n) in

Fσ(Q) ·
[
Fρ(R)

]∗
=

[〈
Xaσ(n−1)aρ(m−1)Y

〉
− 1

Nf

〈
Xaσ(n−1)

〉〈
aρ(m−1)Y

〉]
· (spectators),

(B.1)

where the product is defined as in (3.32).
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From here on, we work only to leading order in Nf , so we can omit the second term

above. (Note that we do not do this because Nf is necessarily large, but because we wish

to use power counting of Nf to separate orthogonal flavour structures.) We then move on

to contracting σ(n− 1), followed by σ(n− 2), and so on. Each time we contract σ(n− i),
the situation may be one of the following cases:

1. ρ(m− i) = σ(n− i). We carry on through a special case of the contraction identity

(3.16), and find 〈
Xaσ(n−i)aσ(n−i)Y

〉
=
N2
f − 1

Nf
〈XY 〉. (B.2)

This may be repeated as long as there are indices left, and we gain a factor of Nf

(plus O(N−1f ), which we ignore) each time.

2. ρ(m − i) 6= σ(n − i), but ρ(m′) = σ(n − i) is in the same trace as σ(n − i). Here,

(3.16) (after some reshuffling of X and Y ) gives

〈
Xaσ(n−i)Y aσ(n−i)

〉
=

[
〈X〉〈Y 〉 − 1

Nf
〈XY 〉

]
. (B.3)

the second term is suppressed by a factor of N−1f , and the first must eventually take

a detour through (B.1) before continuing; in any case, this case falls behind case 1

by at least two factors of Nf .

3. ρ(m′) = σ(n− i) is in a different trace than σ(n− i). This forces us to bring in the

spectator trace containing ρ(m′) and go back to (B.1), so this case falls behind case

1 by at least one factor of Nf .

4. The trace is empty. We gain a factor of 〈1〉 = Nf , and if there are no spectator traces

left, we are done. Otherwise, we bring in the next pair of spectators and continue

from (B.1).

If Q = R = {n} and σ ≡ ρ (mod ZR), we will only encounter case 1 until we finish with a

case 4, and will gain a total factor of Nn
f [1 +O(N−2f )]. If Q = R 6= {n} on the other hand,

we will encounter case 4 at each split, but the leading power of Nf stays the same.

If σ 6≡ ρ (mod ZR), we must eventually encounter case 2, so this falls behind the

σ ≡ ρ (mod ZR) case by at least two powers of Nf . If Q 6= R, we will encounter case 3

(without a corresponding case 4) whenever there is a mismatch in the flavour splits, so we

will fall behind the Q = R case by at least one power of Nf . This is the reason for the

values of γ stated below (3.32).

Thus, we have proven

Fσ(Q) ·
[
Fρ(R)

]∗
= Nn

f

1 +O
(
N−2f

)
if Q = R and σ ≡ ρ (mod ZR),

O
(
N−γf

)
otherwise (γ ≥ 1)

(B.4)

which is (3.32).
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C The double soft limit

This appendix provides a derivation of (4.4), which is used to calculate the double soft

limit of stripped amplitudes. We start by quoting (4.2), which is proven in [36] and gives

the double soft limit of the full amplitude:

lim
ε→0
Maba1···an

m,n+2 (εp, εq, p1, . . . , pn) =

− 1

F 2

n∑
i=1

fabcfaidc
pi · (p− q)
pi · (p+ q)

Ma1···a(i−1)da(i+1)···an
m,n (p1, · · · , pn). (C.1)

In order to find the corresponding expression for a stripped amplitude, we project it out by

contracting both sides with [Fid(R)]∗ over all flavour indices (see (3.12) and section 3.6). On

the left-hand side of (C.1), this will project out limε→0Mm,R(εp, εq, p1, . . .). For simplicity,

we start with R = {n+ 2} before moving on to the general multi-trace case. According

to (3.12), the right-hand side of (C.1) has the form (schematically, with kinematic terms

omitted) ∑
σ∈Sn/Zn

fabcfaidc
〈
aσ(1) · · · aσ(i−1)daσ(i+1) · · · aσ(n)

〉
(C.2)

plus flavour-split structures, but those can be ignored due to (3.32). We have omitted the

algebra generators for readability; ai means tai . The structure constants can be contracted

in using (3.15) and fabc = −i
〈
ta
[
tb, tc

]〉
, leaving

−
〈
aσ(1) · · · aσ(i−1)

[
[a, b], aσ(i)

]
aσ(i+1) · · · aσ(n)

〉
. (C.3)

With appendix B in mind, we immediately see that this is orthogonal to Fid(n+ 2) unless

σ = id. The nested commutators expand to

[[a, b], ai] = abai − baai − aiab+ aiba. (C.4)

Since a comes before b in Fid(n+ 2), the second and fourth terms vanish under the projec-

tion. Also, ab occurs at the beginning (or, equivalently, the end) of the flavour structure,

so the first term only contributes when i = 1, and the third term only contributes when

i = n. This collapses the sum in (C.1) to those two cases, leaving

lim
ε→0
Mm,{n+2}(εp, εq, p1, . . . , pn) =

1

F 2

{
p1 · (p− q)
p1 · (p+ q)

− pn · (p− q)
pn · (p+ q)

}
Mm,{n}(p1, · · · , pn). (C.5)

If we now move on to general R, we see that a and b must reside in the same trace, since the

nested commutator on the right-hand side is inside a single trace. This is essentially the

condition stated for the validity of (4.4), with (pn, p, q, p1) mapping to (pi−1, pi, pj , pj+1).

The trace they reside in can be treated exactly like the single-trace flavour structure of

(C.5), and all other traces in the flavour structure follow along as “spectators”, as in a
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normal application of (3.32). The reduction {n + 2} → {n} in (C.5) then generalises to

R → R′ as described below (4.4). This generalisation therefore results in (4.4), which is

thereby proven.

D Closed Mandelstam bases

Here, we show the derivation of closed Mandelstam bases for all 6-particle flavour structures

as described in section 4.2. Note that neither basis is unique, and that better basis choices

may exist.

D.1 The basis for R = {2, 4}
This is the only basis other than B{6} that is needed at O(p4). This flavour split permits

four different propagator momenta (corresponding to the labellings in (3.21)). Since Z{2,4}
is Abelian and rather small, it is simple to handle, and some inspired trial-and-error gives

the closed basis B{2,4} = {t1, . . . , t9} with elements11

t1 = s123, t2 = s124, t3 = s125, t4 = s126,

t5 = s45 + s56 +
s125 − s123

2
, t6 = s45 − s56 +

2s124 − (s124 + s125)

2
,

t7 = s14 + s15 +
s123 + s126

2
, t8 = s15 + s16 +

s123 + s124
2

,

t9 = s14 + s16 +
s123 + s125

2
.

(D.1)

Under the action of Z{2,4}, they transform as

21 3456 : {t1, . . . t6, t7, t8, t9} → {t1, . . . t6, −t7,−t8,−t9},
12 4563 : {t1, . . . t6, t7, t8, t9} → {t2, t3, t4, t1, t5,−t6, +t8,−t7,−t9},

(D.2)

where the first permutation cycles the 2-trace, and the second cycles the 4-trace; together,

they generate all of Z{2,4}. Note that Z{2,4} does not act as a true permutation on the basis,

since some elements change sign. This appears to be unavoidable, but is not a problem —

in fact, any complex phase can be applied without hindering simplification.

D.2 The basis for R = {3, 3}
The group Z{3,3} is generated by the permutations g1 = 231 456 and g2 = 456 123. The

group is not abelian, which makes its effects less predictable. Among all kinematic invari-

ants, only s123 maps to itself under both generators, and is also the only squared propagator

momentum permitted by this flavour structure. The other 24 invariants decompose into a

sextuplet and two nonets under the group, and can be mapped out in a variant of a Cayley

11This basis is a slight improvement over the one used in [37]. It modifies t5 and t6 so that they map to
themselves under Z{2,4}.
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graph:

45

64 56

12

31 23

?
14

?
36

?
25•24

•16

• 35◦34

◦ 26

◦15

345

135

234145

134

125245

124

235

(D.3)

Each node in the graph represents sij··· and is marked with ij · · · . The action of g1 is rep-

resented by following the solid-drawn triangles clockwise, and g2 is represented by following

the dashed lines.

We must now extract 9 basis elements t1, . . . , t9 that are closed under Z{3,3}. In the

first nonet, we have marked three sets of invariants with ?, • and ◦. They map to each

other as (?, •, ◦)→ (•, ◦, ?) under g1 and as (?, •, ◦)→ (?, ◦, •) under g2, so suitable linear

combinations of the elements in each set will be closed under Z{3,3}. Similar constructions

taken from the sextet and the other nonet turn out not to be linearly independent from

these.

Unfortunately, it appears impossible to form a basis that contains the propagator

momentum s123 as an element, but since there is only one propagator, this is not as much

of a problem as it would be under a group that supports more operators. Also, it appears

impossible to form real linear combinations without sacrificing either linear independence

or closedness. Guided by the fact that g1 has period 3, we instead insert the third root of

unity, ω = e2πi/3, and find the closed and complete basis B{3,3} with elements12

t1 = −s36 + s14 + s25
3

, t2 = −s24 + s35 + s16
3

, t3 = −s15 + s26 + s34
3

,

t6 =
s36 + ωs14 + ω2s25

3
, t4 =

s24 + ωs35 + ω2s16
3

, t5 =
s15 + ωs26 + ω2s34

3
,

t9 =
ω2s36 + ωs14 + s25

3
, t7 =

ω2s24 + ωs35 + s16
3

, t8 =
ω2s15 + ωs26 + s34

3
,

(D.4)

In each row above, the first basis element comes from the ? set, the second from the • set,

and the third from the ◦ set. The propagator momentum is s123 = 3
2(t1 + t2 + t3). The

basis transforms as

g1 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t2, t3, t1, ωt5, ωt6, ωt4, ω2t8, ω
2t9, ω

2t7},
g2 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t3, t2, t4, t6, t5, t7, t9, t8}.

(D.5)

Since stripped amplitudes are real, the complex basis must be compensated for by complex

coefficients. Still, B{3,3} is just as valid as a real basis, and is useable for simplification.

12The basis presented in [37] was not complete. This mistake was not discovered until after its publication,
and is corrected here at the cost of losing the propagator.
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D.3 The basis for R = {2, 2, 2}
The group Z{2,2,2} is also non-abelian, and can be tackled similarly to Z{3,3}. We choose

the generators g1 = 34 56 12, g2 = 21 34 56 and g3 = 65 43 21 with the hopes that they be

well-behaved, since B{6} is closed under two of them. This flavour structure permits six

propagators that form a sextet under the group. The Cayley graph is

156

126

123

125

134

124 (D.6)

where g1 and g2 are represented as in (D.3), and the dotted lines represent the action of

g3. The remaining invariants decompose into a triplet, a quadruplet, and a 12-plet:

12 56

34

136 145

235

135

?45

?
46

? 36

?
35

•23

•13

• 24

• 14

◦61 ◦62

◦
51

◦
52

(D.7)

Like in (D.3), we have marked three closed sets of sij ’s. From these, it is possible to

construct three linearly independent elements that close the basis without need for the less

structured triplet and quadruplet. Thus, B{2,2,2} has elements

t1 = s123, t2 = s126, t3 = s156, t4 = s124, t5 = s125, t6 = s134,

t7 =
s61 − s62 + s52 − s51

2
, t8 =

s23 − s24 + s14 − s13
2

, t9 =
s45 − s46 + s36 − s35

2
,

(D.8)

where the factors of 1/2 remove some large powers of 2 that show up when writing amp-

litudes in this basis. Unlike in B{3,3}, there was no need to resort to complex numbers.

The basis transforms as

g1 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t2, t6, t4, t5, t3,−t7,−t8, t9},
g2 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t2, t3, t1, t5, t6, t4, t8, t9, t7},
g3 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t3, t2, t4, t6, t5, t7, t9, t8}.

(D.9)

No element is a fixed point, which makes the basis harder to work in.

E Explicit amplitudes

E.1 The O(p6) 6-point amplitude

This amplitude has been simplified using the closed bases of appendix D. The terms were

reduced to coset representatives in fodge followed by manual post-processing. Greater
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simplification might be possible for some terms. The amplitude consists of four stripped

amplitudes with flavour split {6}, {2, 4}, {3, 3}, and {2, 2, 2}.
There are three diagrams with a single-trace flavour structure:

6 6 4 4 (E.1)

The corresponding stripped amplitude is

−iF 8M6,{6}

= 2(L3 + 2L0)
2
{

2(s12 + s23)
2(s45 + s56)− s123(s12 + s23)(s45 + s56)

}
+ 16L3L0s12s23(s45 + s56)

− 8(L2
0 + L3L0)

(s12 + s23)
2(s45 + s56)

2

s123
− 2L2

3

(s212 + s223)(s
2
45 + s256)

s123

+ L6,3

{[
s123s34 −

s123s234
2

]
(s12 + [Z6])− s12s23s34

+
2(s12 + s45)

3 + (s312 + s345)

3
−
[
(s12 + s23)

3 + 2(s312 + s323)
]

(s45 + s56)

3s123

}

+ L6,4

{
s123s234s345 +

s2123
2

(s234 + s345 − 2s34)

− 2s123s234(2s12 + s23 + 2s34)−
s12s45

2
(s123 + s345)

+ s123 [s12 + s56 + 2s12s34 + 2s34s56 + 4s34(s23 + s34 + s45)]

+
(s12 + s45)

3

2
− (s12 + s23)

3(s45 + s56)

s123

}
− L6,15 {s12s45s56}
+ L6,16

{
s12(s34 + s45)(s123 + s345)− s12s123s345 − s12s34s56 −

s12s45
2

(s12 + [Z6])
}

+ L6,17 {s12s45(s123 + s345 − s12 − s45)}
+ L6,18

{
(s12 + s45 + s2234)(s123 + s345)− s12s234(s123 + [Z6])− 4s12s123s345

+ 2s12s234(s23 + s34 + s45 + s56 + s61)− 2s12s34(s23 + s45 + s56 + s61)}
+ L6,19

{
2s123s234s345 + 3s2234(s123 + s345)− 3s12s234(s123 + [Z6])− 6s12s123s345

+ 6s12s234(s23 + s34 + s56 + s61)− 6s12s23s34 − 2s12s34s56}
+ [Z6]. (E.2)

The “+ [Z6]” acts on all terms in the amplitude.

There are also three diagrams with a {2, 4}-split flavour structure:

6 6 4 4 (E.3)
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Using the closed basis (D.1), the stripped amplitude is

−iF 8M6,{2,4}

= L0L1

{
t1
[
−t21 + t22 + 2t3(3t2 + t3 − 2t5) + t24 + 4t25

]
− T 2

234(t3 − 2t5)
2

t1

}
+ L0L2

{
t1

[
t1

(
2t5 −

5t1
4

)
+ t2

(
t2
4

+
3t2
2

+ 4t5

)
+ 3t3

(
t3
2
− t5

)
+
t24
4
− 3t25 + T 2

789

]
− (t3 − 2t5)

2(T 2
234 + 4T 2

789)

4t1

}
+ L3L1

{
− t

3
1

2
+ 2t21(t5 − t6)

+ t1

[
2t2(t3 + 2t5 + t6) + t3(5t3 + t5 − 3t6)−

3t24
2

+ t25 + t26

]
+

1

t1

[
−t32(t2 + t3 + 2t4 + 2t6) + t22

(
t23
2

+ t3(t5 − 3t6)− t24 − 4t4t6

)
+ t2(t

2
3t4 + t3t

2
4) + 2t2t3t4(t5 − t6)− 2t2t

2
4t6 −

t43
2

+ t33(−t4 + t5 + t6)−
t23t

2
4

2
+ (t5 + t6)(t3t

2
4 + 2t23t4)− T 2

234(t
2
5 + t26)

]}
+ L3L2

{
−9t31

8
+ t21

t5 + t6
2

+ t1

[
t2

(
11t2

2
+
t3
2

+ 3t5 +
5t6
2

)
+
t3
4

(5t3 + t5 + t6)−
3(t25 + t26)

4

− 7t24
8

+ t7(t9 − 3t8) + 5t8t9 +
t28 + t9

2

]
+ t5(2t

2
7 + t29) + 2t6t7t8

+
1

t1

[
T 2
789

4

(
[2t2 − t3]2 + [2t5 + 2t6 − t3]2 + 8t6[t2 − t5]

)
− T

2
234

4
(t25 + t26) +

t5 + t6
4

(2t23t4 + t3t
2
4)−

t42
4
− t32

4
(t3 + 2t4 + 2t6)

+
t22
8

(t23 + 2t3t5 − 6t3t6 − 2t24 − 8t4t6)

+
t2
2

(
t23
2

[t4 + 2t5] +
t3
2

[
t24 + 2t4t5 − 2t4t6

]
− t24t6

)]}
+ L6,1H(3) + L6,2H(−1)

+ L6,8

{
t1
4

[
t22 − 2t23 + t24 − 2(t25 + 2t26) + 2t6(t1 + t3)

]}
+ L6,9

{
−t1

[
4t25 +

t22 + t24
2

+ t2t3 − t5(t1 + 2t2 + t3)

]}
+ L6,11

{
t31
16
− t1

16

[
t22 − t23 + t24 + 4(t28 − t27) + 2t2(t5 + t6) + 4t9(t8 + t7)

]
− t5t

2
9

8
− t6t

2
7

4

}
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+ L6,12

{
t31
16
− t1

16

[
(t2 + t3)

2 + t24 + 4(t7 + t8)
2 + 4t29 − 4t3t5

]
+ t5

2t27 − t29
4

}
+ [Z{2,4}], (E.4)

where Tijk = ti + tj + tk, and

H(η) =
3t31
128
− 3t21t5

32

+ t1

[
9t22
128

+ t2
3t3 − 5t5

32
+
t23
32
− 5t3t5

64
+

9t24
128

+
η

32
(t7 + t8 − t9)2 +

η

8
(t27 + t28 − t29)

]
− ηt5

2t27 + t29
16

+
3

16t1

[
t32
t3 − 2t5

24
+
t22t3
8

(t3 + t4 − 2t5)−
t22t4t5

4

+
t2t

2
3

8
(t3 + 2t4 − 2t5) +

t2t3
8

(t24 − 4t4t5) +
t2t

2
4t5
4

+
t33
24

(t3 + 3t4 + 2t5) +
t23t4
8

(t4 − 2t5) +
t44
24
− t24t5

12
(3t3 + t4)

+
ηT 2

789

6

(
t23 + t2t3 − t2t5 + t3t4 − 2t3t5 − 2t4t5

)]
(E.5)

is used for compactness.

There are two diagrams with a {3, 3} flavour split:

6 4 4 (E.6)

Using the closed basis (D.4), the stripped amplitude is

−iF 8M6,{3,3}

= 64(L0 + L3)
2

{
(s12 + s23)

(
s245 + s45s56 + s256

)
+
(
s212 + s12s23 + s223

)
(s45 + s56)

−
(
s212 + s12s23 + s223

) (
s245 + s45s56 + s256

)
s123

}

+ L6,10

{
t31
4
− (t44 + t37) +

t1t2t3
2

+ t4t5t6 + t7t8t9 +
3t1t

2
2

2
+ 6ωt1t5(t9 − t8)

}
+ L6,13

{
t31 − (t34 + t37)− 3ωt1t4t7

}
+ L6,14 {t1t2t3 − (t4t5t6 + t7t8t9) + 6ωt1t5t9}
+ [Z{3,3}], (E.7)

where ω = e2πi/3 is a third root of unity. The contribution from the singlet diagram turns

out to be simpler to express in the standard basis B{6} than in the closed basis.
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Lastly, there are two diagrams for the {2, 2, 2} flavour split:

6 4 4 (E.8)

Using the closed basis (D.8), the stripped amplitude is

−iF 8M6,{2,2,2}

= L2
1

{
− t

3
1

2
+ t1(2t

2
2 + 6t2t4 + t24)

− 1

t1

[
t44
2

+ (t2 + t5)
2(t24 + 4t3t4t

2
3) + 2t2t3t5t6 + 2t2t

2
3t5 + 8t24t2t3 + 4t34t2

]}
+ L1L2

{
t1t

2
8 +

3t1t
2
4

2
+
t1t2
2

(4t9 + 5t4 − 8t3 − 5t2)−
5t31
4

− 1

t1

[
t22
2

(
t22 + 2t33 + 3t24 − t25 + 4t29 + 2t2t4 + 4t2t9 + 8t4t9 + 8t3t4 + 4t3t6

)
+ t2t3(4t

2
4 + 4t4t5 + t5t6) + 2t2t9(t

2
4 − t25) + 2t2t

2
9(t4 + t5)

+ 2t2t
3
4 +

t2t
2
4t5
2
− t2t4t25 + t24t

2
8 +

t44
4

]}
− L2

2

{
21t31
32

+
3t1t

2
8

4
− 11t1t

2
4

16
+
t1t2
4

(t4 + 6t3 + t2 − 10t9)

+
1

4t1

[
t22
2

(
t22 + 2[t3 + t4]

2 − t25 + 4[t28 + t29] + 2t2[t4 + 2t9] + 8t4t9 + 8t3t8
)

+ t2t3
(
2t24 + 2t4t5 + t5t6 − 4t5t8 + 8t8t9

)
+ t2t4

(
t24 + 2t4t9 − t25 + 4t29

)
− 2t2t

2
5t9 + 2t2t5

(
t29 − t28

)
+ t28

(
t24 + 2t29 + 8t2t9

)
+
t44
8

]}
+ [Z{2,2,2}] (E.9)

This completes the amplitude.

E.2 The O(p2) 10-point amplitude

Due to the absence of flavour splits, O(p2) amplitudes are relatively easy to extend to many

legs. The 10-point amplitude, which is also computed in [36], is given by the 16 diagrams13

13The circular shape is a result of the automatic diagram drawing in fodge. The external legs are evenly
distributed around a circle, and the location of each vertex is generated from the mean locations of all legs
and vertices connected to it.
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and has the stripped amplitude

−16iF 8M2,{10} = 5s12 + 2s1234

− (s12 + s23 + s34 + s45 + s14 + s25)(s67 + s78 + s89 + s9A + s69s7A)

2s15

− s12 + s23
s123

{
2 (s45 + s56 + s67 + s78 + s89 + s9A) + 2

(
sA3 + s14

)
− (s67 + s78)(s45 + s9A + sA3 + s14 + s58 + s69)

2s678

− (s78 + s89)(s45 + s56 + s14 + s47 + s7A + s69)

s789

− (s89 + s9A)(s45 + s56 + s67 + s14 + s47 + s7A)

s89A

+
s9A + sA3

s48

[
(s67 + s78)(s45 + s58)

2s678
− (s45 + s56 + s67 + s78 + s47 + s58)

]
+
sA3 + s14

s59

[
(s67 + s78)(s58 + s69)

2s678
− (s56 + s67 + s78 + s89 + s58 + s69)

]
+
s14 + s45
s15

[
−
(
s67 + s78 + s89 + s9A + s69 + s7A

)
+

(s67 + s78)(s69 + s9A)

2s678
+

(s78 + s89)(s69 + s7A)

s789
+

(s89 + s9A)(s67 + s7A)

s89A

]
+ s47 + s58 + s69 + s7A +

(s7A + sA3)(s45 + s56)(s78 + s89)

s456s789

}
+ [Z10]. (E.10)

To avoid problems with multi-digit indices, we switch to hexadecimal and write A instead

of 10. To abbreviate long index lists, we write ij for i(i + 1) · · · (j − 1)j. Indices wrap

around cyclically; A3 means A123.

E.3 The O(p2) 12-point amplitude

This is a novel amplitude, and takes the most time to compute of all amplitudes presented

in this work. It consists of 73 diagrams:
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and has the stripped amplitude

−32iF 10M2,{12} = 14s12 + 5s1234 + 2s123456

+
s12 + . . .+ s45 + s14 + s25

s15

{
−
(
s67 + . . .+ s9A + s69 + s7A

)
(s69 + s7A)

s6A

×
[
2(s67 + . . .+ sBC) + (s69 + . . .+ s9C) + 2(s16 + s6B)

]
+

(
s78 + . . .+ sAB + s7A + s8B

)
(s16 + s6B)

2s7B

}

+
s12 + s23
s123

{
−
[
5
(
s45 + . . .+ sBC + sC3 + s14

)
+ 2

(
s47 + . . .+ s9C + s49 + . . .+ s7C

)]
+
s45 + s56
s456

[
2
(
s78 + . . .+ sBC + sC3 + s47 + s16

)
+ s7A + s8B + s9C + s49

+
s78 + s89
s789

(
−
[
sAB + sBC + s7A + sC3 + s16 + s49

]
+
sAB + sBC

2sABC

+
(s7A + sAB)(s16 + sC3)

s7B
+

(s7A + s49)(sBC + sC3)

sB3

)
+
s89 + s9A
s89A

(
−
[
sBC + s47 + s7A + s8B + sC3 + s16

]
+

(s7A + s8B)(sC3 + s16)

s7B

+
(s8B + sBC)(s47 + s16)

s8C
+

(sBC + sC3)(s47 + s7A)

sB3

)
+
s9A + sAB

s9AB

(
−
[
s47 + s78 + s9C + sC3 + s16

]
+

(s47 + s78)(s9C + sC3)

s48

+
(s78 + s8B)(sC3 + s16)

s7B
+

(s8B + s9C)(s47 + s16)

s8C

)
+
s47 + s78
s48

(
(s49 + s9A)(sBC + sC3)

sB3

−
[
s9A + sAB + sBC + s9C + sC3 + s49

])
− (sC3 + s16)(s78 + . . .+ sAB + s7A + s8B)

s7B

− (s47 + s16)(s89 + . . .+ sBC + s8B + s9C)

s8C

− (sBC + sC3)(s78 + s89 + s9A + s47 + s7A + s49)

sB3

]
+
s56 + s67
s567

[
2
(
s89 + . . .+ sBC + sC3 + s14 + s47 + s58

)
+ s8B + s9C + s49 + s5A

+
s9A + sAB

s9AB

(
(s47 + s58)(s9C + sC3)

s48
− 1

)
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+
s47 + s58
s48

(
(s49 + s9A)(sBC + sC3)

sB3

−
(
s9A + sAB + sBC + s9C + sC3 + s49

))
+
s58 + s89
s59

(
(sBC + sC3)(s49 + s5A)

sB3

+
(sC3 + s14)(s5A + sAB)

sC4

−
(
sAB + sBC + sC3 + s14 + s49 + s5A

))
− (s14 + s47)(s89 + . . .+ sBC + s8B + s9C)

s8C

− (sBC + sC3)(s89 + s9A + s47 + s58 + s49 + s5A)

sB3

− (sC3 + s14)(s89 + s9A + sAB + s58 + s8B + s5A)

sC4

]
+
s67 + s78
s678

[
2
(
s45 + s9A + sAB + sBC + sC3 + s14 + s58 + s69

)
+ s9C + s49 + s5A + s6B

+
s45 + s14
s15

(
(s69 + s9A)(s6B + sBC)

s6A
−
(
s9A + sAB + sBC + s69 + s9C + s6B

))
+
s45 + s58
s48

(
(s49 + s9A)(sBC + sC3)

sB3

−
(
s9A + sAB + sBC + s9C + sC3 + s49

))
+
s58 + s69
s59

(
(sBC + sC3)(s49 + s5A)

sB3

+
(sC3 + s14)(s5A + sAB)

sC4

−
(
sAB + sBC + sC3 + s14 + s49 + s5A

))
+
s69 + s9A
s6A

(
(s45 + s5A)(sBC + sC3)

sB3

+
(sC3 + s14)(s5A + s6B)

sC4

−
(
sBC + sC3 + s14 + s5A + s6B

))
− (sBC + sC3)(s45 + sBC + s58 + s69 + s49 + s5A)

sB3

− (sC3 + s14)(s9A + sAB + s58 + s69 + s5A + s6B)

sC4

]
+
s78 + s89
s789

[
1

2
(s45 + s56 + s14 + s69) + 2(s16 + s49 + s5A + s6B)

+
s14 + s45
s15

(
(s6B + sBC)(s69 + s7A)

s6A
+

(s7A + sAB)(s16 + s6B)

2s7B

−
(
sAB + sBC + s69 + s7A + s16 + s6B

))
+
s56 + s69
s59

(
(sBC + sC3)(s49 + s5A)

2sB3

+
(sC3 + s14)(s5A + sAB)

sC4

−
(
sAB + sBC + sC3 + s14 + +s49 + s5A

))
+
s69 + s7A
s6A

(
(sC3 + s14)(s5A + s6B)

2sC4

−
(
s45 + sBC + sC3 + s14 + s5A + s6B

))]
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+
s14 + s45
s15

[
2
(
s67 + . . .+ sBC + s16 + s6B

)
+ s69 + . . .+ s9C

− (s6B + sBC)(s67 + . . .+ s9A + s69 + s7A)

s6A

− (s16 + s6B)(s78 + . . .+ sAB + s7A + s8B)

s7B

− (s16 + s67)(s89 + . . .+ sBC + s8B + s9C)

s8C

]
+
s45 + . . .+ s78 + s47 + s58

s48

[ (
s9A + sAB + sBC + s9C + sC3 + s49

)
− (s49 + s9A)(sBC + sC3)

sB3

]
+
s56 + . . .+ s89 + s58 + s69

s59

[ (
sAB + sBC + sC3 + s14 + s49 + s5A

)
− (s49 + s5A)(sBC + sC3

sB3

− (s5A + sAB)(sC3 + s14)

sC4

]
+
s67 + . . .+ s9A + s69 + s7A

s6A

[ (
s45 + sBC + sC3 + s14 + s5A + s6B

)
− (s45 + s5A)(sBC + sC3)

sB3

− (sC3 + s14)(s5A + s6B)

sC4

]
+
s78 + . . .+ sAB + s7A + s8B

s7B

[(
s45 + s56 + sC3 + s14 + s16 + s6B

)
− (sC3 + s14)(s56 + s6B)

sC4

]
+

(s89 + . . .+ sBC + s8B + s9C)(s56 + s67 + s14 + s47 + s16)

s8C

+
(sBC + sC3)

[
2(s45 + . . .+ s9A + s49 + s9A) + s47 + . . .+ s7A

]
sB3

+
(sC3 + s14)

[
2(s56 + . . .+ sAB + s5A + s6B) + s58 + . . .+ s8B

]
sC4

}
+ [Z12]. (E.11)

We use the same abbreviations as above, with A,B,C = 10, 11, 12. Furthermore, we

contract sums like s12 + s23 + s34 + s45 to s12 + . . .+ s45.
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