
Leif Lönnblad

Introduction to C++

• Only seven lectures + exercises

• Examination through programming project

• Assume little experience of programming

• C++ language

• Object orientation, generic programming

• The standard library

1

Meeting Dates

Proposed: Thursdays at 10-12.
Room NB at Theoretical Physics is available most weeks.

Thu 20/3 Introduction. (pp 1–41)

Thu 27/3 Basic language features. (pp 42–76)

Thu 3/4 Object orientation. (pp 77–101)

Thu 10/4 Templates and namespaces. (pp 102–127)

Thu 24/4 The standard library. (pp 128–151)

Tue 29/4 Containers and iterators. (pp 152–188)

Thu 8/5 (K327) Tricks, pitfalls, general advice. (pp 189–212)

September Deadline for projects.

2

The Examination Project

A three week course is not enough to learn C++. You need to

get your hands dirty programming.

The project should be a program or a part of a program which

is useful for your research and which shows you have

understood C++ to some extent. Choose a project consulting

with your supervisor and Carl.

(Note also that these are Leif’s notes, lightly revised by Carl.

There is no real time limit on the project, but it should

typically be finished after the summer / early fall.

We will be available for questions and advice until it is ready.
(and afterwards)

3

This course will give you an introduction to the C++ language.

You will not be able to write good C++ programs after this

course, but you will be able to learn on your own.

I will try to explain how C++ works behind the scenes to help

you understand the why C++ was designed the way it was.

Object oriented analysis/design is a science of of its own. I will

only give you the basic philosophy of object orientation.

4

There will be no course book, only these slides.

Use “The C++ Programming Language” fourth edition by

Bjarne Stroustrup as a reference for the exercises and project.

There is a free electronic book: “Thinking in C++” 2nd

edition by Bruce Eckel. It’s got good reviews on Amazon but

may be a bit outdated.

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Other useful resources:

• General C++ info http://www.accu.org/

• C++ Guru of the week http://www.gotw.ca

• newsgroups: comp.lang.c++.moderated, comp.std.c++

• IRC: ##C++ and ##C++-beginners on Freenode,

irc.freenode.net

5

You will need a C++ compiler

If you are on Linux, use g++ (which is part of GCC, the GNU

Compiler Collection): http://www.gnu.org/software/gcc/gcc.html

If you have a Windows machine, you may want to install

CygWin from http://www.cygwin.com

(don’t forget to select gcc/g++ and an editor, e.g. Emacs)

6

What is C++

A computer language based on C but more (The meaning of
’++’ will become clear later.)

C++ is not simple, but it is versatile

Keywords are type safety, object orientation and generic
programming.

Easy access to fundamental system calls but also easy to make
high-level abstractions.

Try to detect as many bugs as possible at compile-time

C++ has been standardized by ISO (in 1998, with a minor
update in 2003). The next major update, C++11, is gradually
becoming more widely implemented.

7

What is a computer

In Swenglish: Data machine – a machine for manipulating data.

A program tells the computer how to read data from a device

(disk, keyboard, mouse, scanner, network, . . .) into the

memory, manipulate it and write it to another device (disk,

screen, printer, network, . . .).

The computers memory is logically divided into parts: Static

memory with the instructions sequenced into functions (the

program). The stack is used for locally created data and

communication between functions. The heap is used for

dynamically created global data.

8

one byte

CPU

H
ea

p

S
ta

ck

S
ta

ti
c

m
em

o
ry

Stack pointerFunction pointer

one word

9

Data are made of (binary) bits. bits are grouped into bytes

(typically 8 bits per byte). bytes are grouped into words

(typically 4 or 8 bytes per word).

These words could mean anything, but there are some

meanings of a word which are intrinsic to the computer,

typically an integer number, a floating point number, the

address of another word, or an instruction.

10

The basic instructions in a computer are very simple and can

do stuff like read a word from a device and store it at a specific

address in memory, take two words at specified addresses and,

treating them as floating point number add them and put the

resulting word at some other address, or copy a number of

words starting at some address to another address.

When a program is run, instructions are read sequetially from

the static memory and executed. To avoid repetition of

instuctions, the program is divided into functions which can be

called several times during the execution of the program.

11

A function is like a mathematical function, it takes arguments

and it returns a value.

But it may also have side effects, such as writing on the screen

or allocating data on the heap.

When executing a program the operating system calls the main

function, the mother of all functions in a program.

Inside one function, the same instructions may be executed

over and over in a loop.

12

When one function calls another function, the following has to
be done

• push the value of the current

stack pointer to the stack

• push the address of the next

instruction to be executed af-

ter the function call

• push the values of the argu-

ments to the stack

• make room on the stack for

the called function to place its

return value

• set the function pointer to the

address containing the first in-

struction of the function to be

called.

used for tem
porary data

R
eturn data

argument 1

argument 2

argum
ent 3

argument 4

Stack Pointer

13

The called function only knows the address on the stack where

the arguments are stored. The calling function only knows the

address on the stack where the return value is placed.

The called function has no way of knowing if the calling

function has put the right number and right type of arguments

on the stack. The calling function has no way of knowing that

the called function has put the right type of return value on the

stack. It is the responsibility of the programmer to ensure that

this works. Some languages helps the programmer. C++ has

strong type checking.

14

A programming language is meant to help the programmer to

formulate his problem in a way the computer can handle it.

The early languages had a structure very close to the computer

it self and only gave a little help to the programmer.

E.g. Fortran defines a few new data types (complex numbers,

character string, vectors/arrays of data types) and operations

on them. Just as the computer as a whole. Fortran (and C)

can be defined in term of a set of functions (or subroutines)

acting on a common set of data (common blocks). Fortran

does not enforce type checking.

15

If all you have is a hammer, any

problem will look like a nail.

Most problems are not most efficiently formultated in terms of

functions acting on a global pool of data.

C++ allows you to formulate problems in terms of user-defined

abstract data types and user-defined operations on them and

relations between them – the data structures have functions

associated with them.

16

In any software design process, you begin by stating the

problem.

In old languages you then look at the verbs in the statement

and identify them with functions.

With object oriented programming you start by looking at the

nouns and then associate them with user-defined types. Then

you look at the relationship between different objects and

different classes of objects.

In the end what the computer deals with is functions acting on

a global pool of unspecified data.

17

The structure of a C++ program

A C++ program usually consists of several header files and
source files.

You declare data types and functions in a header file
(filename.h)

You define (implement) functions in a source file (filename.cc).
To ensure that all arguments and return values are correct, you
#include the relevant header file in the source file.

You compile each source file into an object file (filename.o).
The source file and the headers it #includes make up one
translation unit (TU).

You link all object files you need for a program into an
executable file (a.out).

18

A stupid example:

// increment.h

int increment(int i);
// declares a function ’increment’ taking
// an integer as argument and returning
// another integer

// squareplus1.h

int squareplus1(int i);
// declare a function ’squareplus1’ taking
// an integer argument and returning
// another integer.

// increment.cc
#include "increment.h"

int increment(int i) {
return i+1;

}
// implements the function ’increment’
// simply returning the value of the
// argument plus one.

// squareplus1.cc
#include "squareplus1.h"
#include "increment.h"

int squareplus1(int i) {
int tmp = increment(i);
return tmp*tmp;

}
// implement the function ’squareplus1’.
// First create a temporary integer giving
// it the value of the argument plus one,
// then return the square of the temporary
// integer

19

Stack Pointer

int tmp (local variable)

(squareplus1)

int (return value)

int i (argument)

Compiling and running a main program:

// main1.cc
#include "squareplus1.h"

int main() {
return squareplus1(2);

}
// A main program calculating the square of
// two plus one. ’main’ is always
// implicitly declared for you.

% g++ -c increment.cc
% g++ -c squareplus1.cc
% g++ -c main1.cc
% g++ main1.o squareplus1.o increment.o
% ./a.out
% echo $?
9
%

20

A (slightly less stupid) C++ program:

// hello.cc
#include <iostream>

int main() {

std::cout << "Hello world!" << std::endl;
return 0;

}

% g++ -c hello.cc
% g++ hello.o -o hello
% ./hello
Hello world!
%

21

Everything after // on a line is treated as a comment and is

disregarded by the compiler.

There are also so-called block comments (/* a comment */)

Use them with care

Every line starting with # (such as #include) is a pre-processor

directive. The preprocessor is run before the proper

compilation, and does things like including header files and

removing comments.

22

The C++ compiler comes with a standard library including a

standardized set of types and functions. The corresponding

object files are normally linked automatically, but you must

include the relevant header files: e.g. #include <iostream> or

#include <cmath> if you want to use them.

E.g. the cmath header file contains function declarations such as

double std::sqrt(double);

double std::sin(double);

etc.

23

Some code snippets

std::vector<long> data(10); // declare a vector of 10 long integers
long sum = 0; // declare a long integer set to 0
for (int i = 0; i < 10; ++i) { // loop over the elements of the

data[i] = i*(i-1); // vector set them to something
sum += data[i]; // and add them together in sum

}
std::cout << sum << std::endl; // Write out the sum

std::string name = "John"; // declare a character string and set it
name += " Smith"; // concatenate the charcater string
std::cout << "Length of " << name // write out the full name

<< " is " << name.length()
<< std::endl;

24

C++ code is divided up in statements. A statement can run over

several lines and is terminated with a semicolon ;

A compound statement is a sequence of statements enclosed in

curly brackets {}

All variables, types and functions must be declared before they

are used. A declaration tells the compiler what something is,

whereas a definition in some sense actually creates it. It is

common with statements that both declare and define a

variable.

An identifier (name of a variable, function or type) is a letter

(a-z,A-Z) followed by any number of letters, digit and

underscores. (:: is the scope resolution operator and will be decribed later)

Some names are keywords and may not be used as identifiers,

e.g. long, this, operator, template, public, for, . . .

25

The following fundamental data types are pre-defined:

int

long (int)

short (int)

unsigned (int)

unsigned long (int)

unsigned short (int)

(unsigned) long long (int)

char

(un/signed) char

float

double

long double

bool

void

void is not really a data type – its merits will become clear later

The sizeof operator will give the size of a type or an object in

bytes. E.g. sizeof(char) is 1 (by definition), sizeof(int) is

typically 4 (but machine dependent). But look out! If foo is a

pointer, sizeof(foo) is the size of the pointer, not the size of the object it

points to.

26

Things you can do with fundamental types

int i = 1;
long j = (i+2)*3;
double d = 4.0;
float f = float(sqrt(d));
j += i++; // add i to j and then increment i
j *= --i; // decrement i and then multiply j with i
d = f+3.0*i; // equivalent to f+(3*i) as expected
if (d == 5.0) i = j%2; // % is the modulus operator

==, +, ++, +, %, etc. are operators. Operators have different

precedence and bind in different directions e.g.

a+b*c means a+(b*c) not (a+b)*c and

a+b+c means (a+b)+c

On unix/linux, the operator man page (man 7 operator) is a

convenient list of all the operators.

27

If you need integers of a certain size, C99 provides useful new

types, found in header <cstdint>

int8 t

int16 t

int32 t

int64 t

uint8 t

uint16 t

uint32 t

uint64 t

28

if (condition-expression) statement;

If condition-expression is true (the expression gives a non-zero

value), execute statement.

if (condition-expression) statement1; else statement2;

If condition-expression is true, execute statement1 otherwise

execute statement2.

double d;
std::cin >> d;
if (d > 0.0) d = sqrt(d);
else d = d*d;

if (d < 10)
if (d == 1.0) std::cout << "one";
else {

std::cout << d;
}

else always refers to the last if. (So indent your code well and

be generous with {}!)

29

Looping in C++

for (statement1; condition; statement2) statement3;

First execute statement1, then if condition is true, execute
statement3 and statement2. If condition is still true execute
statement3 and statement2 again, etc. statement3 may be a
single statement or several encosed in {}.

int v[20]; // read in integers from terminal
// into vector ’v’.

for (int i = 0; i < 20; ++i) { // At most 20 objects should be read
v[i] = 0;
if (i == 13) continue; // Don’t assign to v[13]

// (could mean bad luck)
std::cin >> v[i];
if (v[i] == 0) break; // Stop reading if we read a 0

}
if (i < 10) v[10] = 0; // ERROR ’i’ is not defined

// outside of the loop.

continue skips the rest of statement3. break leaves the loop.

30

while (condition) statement;

Check condition. If it is true, execute statement. Then check

condition again and execute statement if it is true. Continue

until condition is false.

int v[20]
int i = 0;
while (i < 20) {

v[i] = 0;
if (i == 13) continue; // OOOPS! loop is continued but ’i’

// is not incremented
std::cin >> v[i];
if (v[i] == 0) break;
++i;

};
if (i < 10) v[10] = 0; // OK, ’i’ is declared outside of loop

31

do statement while (condition);

Execute statement. Then if condition is true execute statement

again, etc.

int v[20]
int i = 0;
do {

v[i] = 0;
if (i == 13) continue; // OK, loop is continued and ’i’

// is incremented in the while condition
std::cin >> v[i];
if (v[i] == 0) break;

} while (++i < 20);
if (i < 10) v[10] = 0; // OK,

32

switch (expression) statement;

Evaluate expression jump to the corresponding case label (or
the optional default label if no match is found) in statement

and continue execution from there

int i;
std::cin >> i;
switch (i) {

case 0:
std::cout << "none";
break;

case 1:
std::cout << "one";
break;

case 2:
case 3:
case 4:

std::cout << "a hand-full";
break;

default:
std::cout << "a lot";

}

int i;
std::cin >> i;
if (i == 0) {

std::cout << "none";
}
else if (i == 1)

std::cout << "one";
else if (i == 2 || i == 3 || i == 4)

std::cout << "a hand-full";
else

std::cout << "a lot";

The case label must be a constant expression because it is evaluated at compile time. Note
also the importance of break between cases.

33

Functions:

double sqr(double d) {
return d*d;

}

unsigned long fact(unsigned long n) {
if (n < 2) return 1;
else return n*fact(n-1);

}

int sqr(int i) {
return i*i;

}

void print(double d) { // returns ’void’
std::cout << d; // i.e. nothing
return; // Not needed at

} // end of function.

void printendl(void) { // Takes no args.
std::cout << std::endl; // (void) the same

} // as just ()

int i = 3;
double d = 5;

long j = fact(i);
double d2 = sqr(d); // calls sqr(double)
print(d2);
printendl();
sqr(i); // calls sqr(int) return

// value disregarded

Functions may be recursive, as fact above. sqr(int) and

sqr(double) are two different functions. When you call

sqr(something), the compiler will choose the relevant one by

examining the type(s) of the argument(s).

34

Another fundamental data type is a pointer. A pointer is an

address of a word/byte in the memory, with information of the

type of the data at that address.

int j = 1;
int *jp; // Declare a pointer ’jp’ to an int
jp = &j; // jp now points to the memory location of ’j’
int i = 1 + *jp; // ’*jp’ gives the value of the int ’jp’ is

// pointing to (dereferencing)
double *dp = jp; // ERROR pointer to double poining to an int.
void *vp = &i; // ’void*’ can point to anything - it is just an address
j = *vp + 1; // ERROR we cannot dereference ’void*’ since we

// do not know the type.
dp = (double*) vp; // OOPS dp now point to ’j. Allowed, but result undefined

&variable means the address of variable

*pointer means the value of the data pointer points to.

35

Pointers and arrays

double darr[10]; // declare an array of ten doubles
// consecutive in the memory

double * dv = darr; // ’darr’ is in fact a pointer to the first
// element in the array.

darr[0] = 1; // set the first (zero’th) element
darr[1] = *darr + 1.0; // ’*darr’ is the same as ’darr[0]’
dv += 2; // ’dv’ now points to the third element
*dv = darr[0] + *(darr+1); // ’darr[i]’ is the same as ’*(darr+i)’
std::cout << darr << " "

<< dv << std::endl; // prints out the actual addresses in hex
// form.

Looking at the output from the last line, the difference

between the two pointers will be two times the number of bytes

a double occupies on the current machine.

36

void swap(double * p, double * q) { // A function taking two pointers
double tmp = *p; // to double as arguments and
*p = *q; // returns nothing.
*q = tmp;

}

void noswap(double p, double q) { // This function would not do
double tmp = p; // anything
p = q;
q = tmp;

}

double d1 = 1.0;
double d2 = 2.0;
swap(&d1, &d2);
std::cout << d1 << " "

<< d2 << std::endl; // The output will be ’2 1’
noswap(d1, d2); // Only swaps local copies of

// d1 and d2

C++ has call by value semantics of functions.

37

References:

int i = 1;
int * ip = &i; // ’ip’ is a pointer to ’i’
int & ir = i; // ’ir’ is now an alias or reference for ’i’
*ip = 2; // ’ir’, ’*ip’ and ’i’ now gives ’2’
ir = 3; // ’ir’, ’*ip’ and ’i’ now gives ’3’
int j = ir; // Also ’j’ is 3
j = 4; // ’i’, ’*ip’ and ’ir’ still gives 3

void swap(double & p, double & q) { // A function taking two references
double tmp = p; // to double as arguments and
p = q; // returns nothing.
q = tmp;

}

double d1 = 1.0;
double d2 = 2.0;
swap(d1, d2); // swaps the values of ’d1’ and ’d2’

A reference is like a pointer which is ’permanently
dereferenced’. In compiled form, the function swap here expects
two arguments containing the addresses of the data in d1 and
d2. The compiled code of swap(double *, double *) would
typically be identical to swap(double &, double &)

38

A reference can be used as a return value:

int & element(int * iarr, int i) { // Returns a reference to the i’th
return iarr[i]; // element of ’iarr’. Remember

} // iarr[i] is the same as *(iarr+i)

int v[10];
element(v, 3) = 4; // ’v[3]’ is now 4

You can have function calls on either side of an = sign.

Anything which can be on the left side of an = sign is called an

lvalue. Any other expression is called an rvalue.

39

The const keyword

const int ci = 5; // Declare a variable which may not be changed
ci = 3; // ERROR try to change the value of a const variable
int & ir = ci; // ERROR try to bind a normal reference to a const
const int & cir = ci; // OK ’cir’ is a ’const’ reference
const int * cip = &ci; // OK ’cip’ is a pointer to const
cir = 3 ; // ERROR try to change a const reference.

double x = 1.0;
const double & cxr = x; // OK a const reference may refer to a non const
x = 3.0; // Both ’x’ and ’cxr’ gives 3.0
cxr = 1.0; // ERROR cannot change the value through a

// const reference

double & d = 1; // ERROR ’1’ is const. normal reference must be
// bound to an lvalue

const double & cdr = 1; // OK cdr is a const reference

In the last line, what happens behind the scenes is equivalent to

const double tmp = double(1);

const double & cdr = tmp;

40

First Exercise

1. Compile and run the hello.cc program.

2. Write, compile and run a small program using the sizeof

operator to find out the sizes of the fundamental types

including pointers on your computer and print them out.

Also examine sizeof("Hello") and sizeof(char[5]).

3. Write a program that prints the numbers between 1 and

100 (one per line). Modify it so that multiples of 3 are

replaced with ”Fizz”, multiples of 5 with ”Buzz” and

multiples of both with ”FizzBuzz”.

41

User defined types:

class Complex { // Define a new type called ’Complex’
public:

double re; // with two double members re and im.
double im;

};

Complex z; // z is a variable of type Complex
z.re = 1.0; // access the individual members of
z.im = 0.2; // the Complex variable
Complex w;
w = z; // Memberwise copy.
Complex * zp = &z; // ’zp’ is a pointer to a Complex
zp->im = zp->re; // Access the members from a pointer.

// equivalent to (*zp).im = (*zp).re;
Complex u = w + z; // ERROR ’+’ operator not defined for

// Complex.

A user defined type is called a class. An instance of a class is
called an object. Instances of fundamental types may also be
referred to as objects.

C has structs but not classes. In C++ we may speak of POD
(plain old data) types – objects that are just an aggregate of
data (like this example).

42

User defined types can also have function members:
class Complex {
public:

double re;
double im;

double mag() { // A member function
return sqrt(re*re + im*im); // returning the absolute

} // value of the complex.
};

Complex z;
z.re = 3.0;
z.im = 5.0;
Complex * zp = &z; // zp points to z
zp->im = 4.0; // z.im is now 4.0
double d = z.mag(); // d should now be 5.0
double d2 = zp->mag(); // d2 is also 5.0

Stack Pointer

Complex::mag

double tmp =

double (return value)

Complex * this

(hidden argument)

C
o

m
p

lex
 z

double z.re

double z.im

z.re*z.re + z.im*z.im

The compiled function corresponding to mag typically looks like

double mag(Complex * this) and is called with a pointer to the

Complex varaible. In fact, in any member function, you have a

pointer to the object it is called for implicitly declared with the

name this.

43

A few special member functions are implicitly defined also for
User defined types

class Complex {
public:

double re;
double im;

Complex() :
re(0.0), im(0.0) {}

Complex(const Complex & z) :
re(z.re), im(z.im) {}

Complex(double r, double i) :
re(r), im(i) {}

Complex & operator=(const Complex & z) {
re = z.re;
im = z.im;
return *this;

}
};

Complex z;
// uses Complex(),
// setting all members to 0

Complex v(1.0, 3.1);
// uses Complex(double, double)
// ’v.re’ is 1.0, ’v.im’ is 3.0

Complex w(z);
Complex u = z;
// both uses
// Complex(const Complex &)

z = u;
// uses operator=(const Complex &)

A member function with the same name as the name of the
class is called a constructor (a.k.a. ctor).

44

Complex() is the default constructor. By default you get an

empty one, which does not initialize the member variables.

Defining any constructor kills the empty default constructor.

Complex(const Complex &) is the copy constructor. If it is not

defined, the values of the members will be copied memberwise.

operator=(const Complex &) is the assignment operator. If it is

not defined, data will be assigned memberwise.

You have the right to remain silent. You have the right to a

copy constructor and an assignment operator. If you cannot

afford to write these, they will be written for you by the

compiler.

45

Complex operator+(Complex a, Complex b) { // Define the behavior
Complex r; // of the + operator for
r.re = a.re + b.re; // Complex
r.im = a.im + b.im; // (as a free function,
return r; // not a class member)

}

Complex z, w, u;
u = w + z; // This is now OK
u = operator+(w, z); // This is equivalent

Operator overloading: We can define operators for Complex.

Operators can be defined to do anything a function can do, but

you cannot change the number of arguments or the precedence

of operators: a+b*c will always be interpreted as

operator+(a,operator*(b,c)) and not

operator*(operator+(a,b),c).

46

Operator overloading is useful, but only in certain situations:

Mathematical operators for mathematical objects (e.g.

arbitrary precision numbers).

operator<< and operator>> when working with input/output

streams.

operator[] for accessing an element in an array-like class.

operator() in function objects (functors) – we will get to these

in later lectures.

47

Declarations and implementations in different files

// Complex.h
class Complex {
public:

Complex();
// Default constructor
Complex(const Complex &);
// Copy constructor

Complex(double r, double i);
// Constructor from doubles

Complex & operator=(const Complex &);
// Assignment operator

Complex operator+(const Complex &) const;
// Addition operator (member version)

double mag() const;
// Normal member function

double re;
double im;

};

// Complex.cc
#include "Complex.h"

Complex::Complex() : re(0.0), im(0.0) {}

Complex::Complex(const Complex & z)
: re(z.re), im(z.im) {}

Complex & Complex::
operator=(const Complex & z) {

re = z.re;
im = z.im;
return *this;

}

Complex Complex::
operator+(const Complex & z) const {

Complex sum;
sum.re = re + z.re;
sum.im = im + z.im;
return sum;

}

double Complex::mag() const {
return sqrt(re*re+im*im);

}

48

Outside of the class declaration the member functions are

accessed using the scope resolution operator: Complex::mag().

The const qualifier in double mag() const; means that the

function does not change the object in any way. The compiled

function will behave like double mag(const Complex * this);

Inside a member function, the data members of an object can

be referred to by name. this->re = 2.0; is allowed, but is

equivalent to re = 2.0;. (In a const member function re = 2.0;

is not allowed, because the implicit this pointer points to a

const object.)

The member Complex::operator+(const Complex &) is preferred

before the global operator+(const Complex &, const Complex &).

a + b is translated to a.operator+(b)

49

Function calls are somewhat expensive. If a function is declared

inline and the compiler can see the function body, it may

choose to expand the function within the calling function to

avoid expensive copying of argument and return values.

class Complex {
public:
double mag() const {

return sqrt(re*re + im*im);
}
inline double phase() const;

double re;
double im;

};

inline double Complex::phase() const {
return atan2(re,im);

}

Member functions which are defined (implemented) within a

class declaration are implicitly declared inline. Note that the

function body must be visible everywhere the function is called

and can therefore not be placed in the .cc file.

50

Private members:

class Complex {
public:

inline double real() const; // return the real part
inline double imag() const; // return the imaginary part
inline double mag() const; // return the magnitude
inline double phase() const; // return the phase

inline void setReal(double); // set the real part
inline void setImag(double); // set the imaginary part
inline void setMag(double); // set the magnitude
inline void setPhase(double); // set the phase

private:
double re;
double im;

};

Complex z;
z.re = 1.0; // ERROR ’re’ is private
z.setReal(1.0);
double d1 = z.im; // ERROR ’im’ is private
double d2 = z.imag();

WHY?
51

WHY?

This is encapsulation and the essence of data abstraction.

Isolate the interface to a data type from its representation.

A complex number is defined by how it behaves under

mathematical operations, not by the fact that it can be

represented by two real numbers on the form (x+ iy). In fact,

a complex number may just as well be represented by two other

real numbers representing the magnitude and the phase r · eiφ.

If the data members are private, we ensure that the outside

functions using compex number are not depending on the

underlying representation. So if we wish to change the

underlying representation no other code using Complex need to

be changed (only re-compiled).

52

class Complex {
public:
// same as above ...
private:

double re;
double im;

};

double Complex::real() const {
return re;

}

double Complex::phase() const {
return atan2(re, im);

}

void Complex::setImag(double i) {
im = i;

}

void Complex::setMag(double r) {
double phi = phase(); // leave phase
re = r*cos(phi); // intact
im = r*sin(phi);

}

class Complex {
public:
// same as above ...
private:

double r;
double phi;

};

double Complex::real() const {
return r*cos(phi);

}

double Complex::phase() const {
return phi;

}

void Complex::setImag(double im) {
double re = real(); // leave real
r = sqrt(re*re + im*im); // part intact
phi = atan2(re, im);

}

void Complex::setMag(double m) {
r = m;

}

53

So far we have only created data on the stack - so called
automatic variables. Such variables are automatically destroyed
in the end of the enclosing scope.

double & somefunction(long i) {
int j = 1; // j is created here
if (i < 0) {

double d = double(i+3*j); // d is created here
} // d is destroyed here

// and the memory can be
// used for other things

double f = 0.0; // f is created here (could use
// the same memory as d).

if (i < 0) {
f = double(i+3*j);

}

return f; // PROBLEM: f is still around
// before the return statement

} // but is destroyed after the
// function returns. The calling
// function is given a reference
// to a non existent variable.

The scope is typically limited by {}
54

Dynamic memory – free store

It is possible to allocate data on the free store (a.k.a. heap).
This will live until it is explicitly destroyed.

Complex * cp =
new Complex(1.0, 1.0); // Create a Complex on the heap, construct it

// as 1+i and return a pointer to it.
cp->setReal(3.0); // ’cp’ is used like any other pointer.
delete cp; // Destroy the complex pointed to by ’cp’

// and allow the memory to be used for
// something else.

cp = new Complex[10]; // Create ten Complexes on the heap and
// return a pointer to the first element

cp[4] = Complex(1.0, 1.0); // used like any other array
delete [] cp; // Delete all ten Complexes (note [])

Complex & tricky() {
Complex * cp =

new Complex(1.0, 0.0);
return *cp; // This is fine. The pointer is destroyed

} // but the Complex it pointed to is still
// around. WARNING: who shall delete the
// Complex?

55

Case study: Character Strings

C++ has inherited rudimentary support for character strings from
C, based on zero-terminated arrays of characters

const char * h = "Hello"; // ’h’ now points to an array of six characters,
// where the last ’h[5]’ is the null char ’\0’

const char * w = "World"; // ’w’ points to another array.

char * hw = h + w; // ERROR you cannot add two pointers.
char hw[11]; // ’hw’ points to an array of size 11.

strcpy(hw, h); // ’strcpy’ is a standard C function. Copies the
// characters (including final ’\0’) from the array
// pointed to by ’h’ to the one pointed to ’hw’

strcat(hw, w); // Copies the characters from the array pointed
// to by ’w’ to the one pointed to by ’hw’ but
// starting at the first occurence of ’\0’ in ’hw’
// ’hw’ now points to an array with ’HelloWorld\0’
// Note that we have to allocate the size of ’hw’
// to include the ’\0’ and we have to know the
// length in advance.

Very cumbersome and non-intuitive.

56

Let’s try to write a character string class encapsulating the C

character array.

class String {
public:

String();
// Default constructor

String(const String &);
// Copy constructor

String(const char *);
// Constructor from C-string

~String();
// Destructor

private:

char * cstring;
// The internal representation.

int len;
// Number of chars in the string.

};

String::String() :
cstring(new char[1]), len(0) {
cstring[0] = ’\0’;

}
// Initialize with ’empty’ string. len is 0

String::String(const String & s) :
cstring(new char[s.len+1]), len(s.len) {

strcpy(cstring, s.cstring);
}
// Allocate enough room, and copy characters.

String::String(const char * cs) :
len(strlen(cs)) {
cstring = new char[len+1];
strcpy(cstring, cs);

}
// Allocate enough room, and copy characters.

String::~String() {
delete [] cstring;

}
// Will be called each time a ’String’ object
// is destroyed.

57

class String {
public:

// ...

String & operator=(const String &);
// Assignment from other string.

String & operator=(const char *);
// Assignment from C-string

String & operator+=(const String &);
String & operator+=(const char *);
// Concatenate this string with
// another.

String operator+(const String &) const;
String operator+(const char *) const;
// Concatenate two strings.

char operator[](int) const;
// Access a character.

int length() const;
//return the length of the string.

};

String & String::operator=(const String & s) {
if (this == &s) return *this;
// Avoid self copy.
delete [] cstring;
len = s.len;
cstring = new char[len+1];
strcpy(cstring, s.cstring);
return *this;

}

String & String::operator=(const char * cs) {
delete [] cstring;
len = strlen(cs);
cstring = new char[len+1];
strcpy(cstring, cs);
return *this;

}

String & String::operator+=(const String & s) {
char * newstr = new char [len + s.len + 1];
strcpy(newstr, cstring);
strcat(newstr, s.cstring);
delete [] cstring;
cstring = newstr;
len += s.len;
return *this;

}

58

String String::operator+(const String & s) const {
String r = *this;
r += s;
return r; // Note: return by value here.

}

char String::operator[](int i) const {
return cstring[i];

}

int String::length() const {
return len;

}

String h = "Hello";
String w = "World";
String hw;
hw = h;
hw += " ";
hw += w + "!"; // hw.cstring is now ’Hello World!\0’
char a = hw[0];
hw[5] = ’w’; // ERROR operator[] returns an rvalue

59

Some lessons learned:

• If the creation of an object involved allocation of

resources, you must provide a destructor (a.k.a dtor) to do

the de-allocation when the object is destroyed.

• Care must be taken in assignment operators to

avoid problems with self-assignment.

• The privacy of members is on per class basis. An

object of a class may access the private members of

another object of the same class in its member functions.

• Never use C-style character strings with

zero-terminated arrays. C++ has a standard string class,

std::string, which you access by #include <string>

60

Case study 2: Vector3

// Vector3.h
#ifndef Vector3_H
#define Vector3_H

class Vector3 {

public:

Vector3(double xx = 0.0, double yy = 0.0,
double zz = 0.0);

Vector3(const Vector3 &);
// The constructors.

~Vector3();
// The destructor.

double x() const;
double y() const;
double z() const;
// The components in cartesian
// coordinate system.

void x(double);
void y(double);
void z(double);
// Set the components in cartesian
// coordinate system.

double phi() const;
// The azimuth angle.

double theta() const;
// The polar angle.

double mag() const;
double mag2() const;
// The magnitude (squared)

double perp() const;
double perp2() const;
// The transverse component (squared)

61

void phi(double);
// Set phi keeping mag and theta constant

void theta(double);
// Set theta keeping mag and phi constant

void mag(double);
// Set mag keeping theta and phi constant

Vector3 & operator=(const Vector3 &);
// Assignment.

Vector3 & operator+=(const Vector3 &);
Vector3 operator+(const Vector3 &) const;
// Addition.

Vector3 & operator-=(const Vector3 &);
Vector3 operator-(const Vector3 &) const;
// Subtraction.

Vector3 operator-() const;
// Unary minus.

Vector3 & operator*=(double);
Vector3 operator*(double) const;
// Scaling with real numbers.

double dot(const Vector3 &) const;
// Scalar product.

Vector3 cross(const Vector3 &) const;
// Cross product.

double angle(const Vector3 &) const;
// The angle w.r.t. another 3-vector.

62

void rotateX(double);
void rotateY(double);
void rotateZ(double);
// Rotates the Vector3 around the
// x-, y- and z-axis.

void rotate(double, const Vector3 &);
// Rotates around the axis specified
// by another Vector3.

private:

double dx;
double dy;
double dz;

// The components.
};

Vector3 operator*(double a, const Vector3 &);
// Scaling of 3-vectors with a real number

#endif /* HEP_THREEVECTOR_H */

63

// Vector3.cc
#include "Vector3.h"

#include <cmath>

Vector3::Vector3(double xx, double yy,
double zz)

: dx(xx), dy(yy), dz(zz) {}

Vector3::Vector3(const Vector3 & p)
: dx(p.x()), dy(p.y()), dz(p.z()) {}

Vector3::~Vector3() {}

double Vector3::x() const {
return dx;

}

double Vector3::y() const {
return dy;

}

double Vector3::z() const {
return dz;

}

void Vector3::x(double xx) {
dx = xx;

}

void Vector3::y(double yy) {
dy = yy;

}

void Vector3::z(double zz) {
dz = zz;

}

double Vector3::phi() const {
return x() == 0.0 && y() == 0.0 ?

0.0 : std::atan2(y(),x());
}

double Vector3::theta() const {
return

x()==0.0 && y()==0.0 && z()==0.0 ?
0.0 : std::atan2(perp(),z());

}

double Vector3::mag2() const {
return x()*x() + y()*y() + z()*z();

}

64

double Vector3::mag() const {
return std::sqrt(mag2());

}

double Vector3::perp2() const {
return x()*x() + y()*y();

}

double Vector3::perp() const {
return std::sqrt(perp2());

}

void Vector3::theta(double th) {
double ma = mag();
double ph = phi();
x(ma*std::sin(th)*std::cos(ph));
y(ma*std::sin(th)*std::sin(ph));
z(ma*std::cos(th));

}

void Vector3::phi(double ph) {
double ma = mag();
double th = theta();
x(ma*std::sin(th)*std::cos(ph));
y(ma*std::sin(th)*std::sin(ph));
z(ma*std::cos(th));

}

void Vector3::mag(double ma) {
double th = theta();
double ph = phi();
x(ma*std::sin(th)*std::cos(ph));
y(ma*std::sin(th)*std::sin(ph));
z(ma*std::cos(th));

}

Vector3 & Vector3::operator=(const Vector3 & p) {
x(p.x());
y(p.y());
z(p.z());
return *this;

}

Vector3 & Vector3::operator+=(const Vector3 & p) {
dx += p.x();
dy += p.y();
dz += p.z();
return *this;

}

Vector3 Vector3::operator+(const Vector3 & p) const {
Vector3 ret = *this;
ret += p;
return ret;

}

65

Vector3& Vector3::
operator-=(const Vector3 & p) {

dx -= p.x();
dy -= p.y();
dz -= p.z();
return *this;

}

Vector3 Vector3::
operator-(const Vector3 & p) const {

Vector3 ret = *this;
ret -= p;
return ret;

}

Vector3 Vector3::operator-() const {
return Vector3(-dx, -dy, -dz);

}

Vector3& Vector3::operator*=(double a) {
dx *= a;
dy *= a;
dz *= a;
return *this;

}

Vector3 Vector3::
operator*(double a) const {

Vector3 ret = *this;
ret *= a;
return ret;

}

double Vector3::
dot(const Vector3 & p) const {

return x()*p.x() + y()*p.y() + z()*p.z();
}

Vector3 Vector3::
cross(const Vector3 & p) const {

return Vector3(y()*p.z()-p.y()*z(),
z()*p.x()-p.z()*x(),
x()*p.y()-p.x()*y());

}

double Vector3::
angle(const Vector3 & q) const {

double ptot2 = mag2()*q.mag2();
return ptot2 <= 0.0 ? 0.0 :

std::acos(dot(q)/std::sqrt(ptot2));
}

66

void Vector3::rotateX(double angle) {
double s = std::sin(angle);
double c = std::cos(angle);
double yy = y();
y(c*yy - s*z());
z(s*yy + c*z());

}

void Vector3::rotateY(double angle) {
double s = std::sin(angle);
double c = std::cos(angle);
double zz = z();
z(c*zz - s*x());
x(s*zz + c*x());

}

void Vector3::rotateZ(double angle) {
double s = std::sin(angle);
double c = std::cos(angle);
double xx = x();
x(c*xx - s*y());
y(s*xx + c*y());

}

void Vector3::rotate(double angle,
const Vector3 & axis) {

rotateZ(-axis.phi());
rotateY(-axis.theta());
rotateZ(angle);
rotateY(axis.theta());
rotateZ(axis.phi());

}

Vector3 operator * (double a,
const Vector3 & p) {

return Vector3(a*p.x(), a*p.y(), a*p.z());
}

Vector3 p1(1, 1); // p1.dz is 0 by default
p1.rotateX(3.14);
Vector3 p2 = 3.0*p1; // Uses global

// operator*(double,Vector3)
Vector3 p3(1.0, 1.0, 1.0);
p3.rotate(-3.14, p1);

67

Case 2 continued: LorentzVector

A Lorentz vector can be thought of as a 3-vector with an extra

time component. Anything you can do with a 3-vector you can

also do with the space-like components of a Lorentz vector. A

Lorentz vector Is a 3-vector.

class Vector3 {
// ...

};

class LorentzVector: public Vector3 {

private:

double dt;

};

LorentzVector inherits the properties of Vector3. Vector3 is a

base class of the derived class LorentzVector.
68

A pointer to an object contains the address of the first (data-)
member of that object∗. A pointer to a Vector3 can be thought
of as the address of Vector3.dx.

double dx;

double dy;

L
o
r
e
n
t
z
V
e
c
t
o
r

double dz;

Vector3 *

double dx;

double dy;

double dz;

LorentzVector * Vector3 *

V
e
c
t
o
r
3

V
e
c
t
o
r
3

double dt;

A pointer to a Vector3 can point to an object of class
LorentzVector.

∗Strictly speaking this is only guaranteed for POD types, classes that only
contain plain old data and lack (non-static) member functions.

69

// LorentzVector.h
#ifndef LorentzVector_H
#define LorentzVector_H

#include "Vector3.h"

class LorentzVector: public Vector3 {

public:

LorentzVector(double=0, double=0,
double=0, double=0);

// Constructor giving the
// components x, y, z, t.

LorentzVector(const Vector3 &, double);
// Constructor giving a 3-Vector and
// a time component.

LorentzVector(const LorentzVector &);
// Copy constructor.

~LorentzVector();
// The destructor.

double t() const;
// Get time component.

void t(double);
// Set time component.

Vector3 vec3() const;
// Get copy of spatial component.

void vec3(const Vector3 &);
// Set spatial component.

LorentzVector &
operator=(const LorentzVector &);
// Assignment.

LorentzVector &
operator+=(const LorentzVector &);
LorentzVector
operator+(const LorentzVector &) const;
// Additions.

LorentzVector &
operator-=(const LorentzVector &);
LorentzVector
operator-(const LorentzVector &) const;
// Subtractions.

70

LorentzVector operator - () const;
// Unary minus.

double s2() const;
// Invariant length squared.

double s() const;
// Invariant length.

double dot(const LorentzVector &) const;
double
operator*(const LorentzVector &) const;
// Scalar product.

void boost(double, double, double);
void boost(const Vector3 &);
// Lorentz boost.

private:

double dt;

};

#endif /* LorentzVector_H */

// LorentzVector.cc
#include "LorentzVector.h"
#include <cmath>

LorentzVector::
LorentzVector(double xx, double yy,

double zz, double tt)
: Vector3(xx, yy, zz), dt(tt) {}

LorentzVector::
LorentzVector(const Vector3 & p, double tt)

: Vector3(p), dt(tt) {}

LorentzVector::
LorentzVector(const LorentzVector & p)

: Vector3(p.x(), p.y(), p.z()),
dt(p.t()) {}

LorentzVector::~LorentzVector() {}

double LorentzVector::t() const {
return dt;

}

void LorentzVector::t(double tt) {
dt = tt;

}

71

Vector3 LorentzVector::vec3() const {
return *this;

}

void LorentzVector::
vec3(const Vector3 & p) {

Vector3::operator=(p);
}

LorentzVector & LorentzVector::
operator=(const LorentzVector & q) {

Vector3::operator=(q);
t(q.t());
return *this;

}

LorentzVector LorentzVector::
operator+ const LorentzVector & q) const {

return
LorentzVector(x()+q.x(), y()+q.y(),

z()+q.z(), t()+q.t());
}

LorentzVector & LorentzVector::
operator+=(const LorentzVector & q) {

Vector3::operator+=(q.vec3());
dt += q.t();
return *this;

}

LorentzVector LorentzVector::
operator-(const LorentzVector & q) const {

return
LorentzVector(x()-q.x(), y()-q.y(),

z()-q.z(), t()-q.t());
}

LorentzVector & LorentzVector::
operator-=(const LorentzVector & q) {

Vector3::operator-=(q.vec3());
dt -= q.t();

}

LorentzVector LorentzVector::
operator-() const {

return
LorentzVector(-x(), -y(), -z(), -t());

}

double LorentzVector::s2() const {
return t()*t() - mag2();

}

double LorentzVector::s() const {
double ss = s2();
return ss < 0.0 ? -std::sqrt(-ss)

: std::sqrt(ss);
}

72

double LorentzVector::dot(const LorentzVector & q) const {
return t()*q.t() - z()*q.z() - y()*q.y() - x()*q.x();

}

double LorentzVector::operator * (const LorentzVector & q) const {
return dot(q);

}

void LorentzVector::boost(double betax, double betay, double betaz) {
boost(Vector3(betax, betay, betaz));

}

void LorentzVector::boost(const Vector3 & beta) {
double b2 = beta.mag2();
double gamma = 1.0 / std::sqrt(1.0 - b2);
double bp = beta.dot(*this);
double gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0;

x(x() + gamma2*bp*beta.x() + gamma*beta.x()*t());
y(y() + gamma2*bp*beta.y() + gamma*beta.y()*t());
z(z() + gamma2*bp*beta.z() + gamma*beta.z()*t());
t(gamma*(t() + bp));

}

73

Alternatives to inheritance

Containment by inheritance.

LorentzVector IsA Vector3.

Containment by value.

LorentzVector HasA Vector3.

Containment by reference.

LorentzVector Points to a

Vector3.

class LorentzVector: public Vector3 {
// ...

};

class LorentzVector {
private:

Vector3 vec3;
public:
// Reimplement all Vector3 member
// functions ’forwarding’ the call
// to vec3
};

class LorentzVector {
private:

Vector3 * vec3;
public:
// Reimplement all Vector3 member
// functions ’forwarding’ the call
// to vec3. Also allocate vec3 in
// each constructor. deallocate it
// in the destructor.
};

Inheritance seems like a good alternative in this case

74

Friends and protected members
A friend function (or class) can acces the private parts of a
class. A derived class can access protected members of a base
class

Vector3 operator*(double a,
const Vector3 & p) {

return Vector3(a*p.x(),a*p.y(),a*p.z());
}

class Vector3 {
public:

friend Vector3
operator*(double, const Vector3 &);

// ... as before

private:
double dx, dy, dz;

};

Vector3 operator*(double a,
const Vector3 & p) {

return Vector3(a*p.dx, a*p.dy, a*p.dz);
}

class Vector3 {
public:

// ... as before
protected:

double dx, dy, dz;

};

class LorentzVector: public Vector3 {
public:

double s2() const {
return dt*dt - dz*dz - dy*dy - dx*dx;

}

private:
double dt;

};

LorentzVector q; // ERROR dx is still
q.dx = 3.0; // private to the rest

// of the world.

75

Second Exercise

Take the code for Vector3 and LorentzVector from

http://cbbp.thep.lu.se/~carl/cpp/ Compile it and write small

programs and functions using them. Try to check that all

rotations and boosts are correctly implemented.

76

Types and typedefs
C++ is a strongly typed language. The language makes it hard to
do stupid things (including some that don’t look very stupid).

class X {
public:

int a;
};
class Y {
public:

int a;
};
X x1;
X x2 = x1; // OK. implicit copy-ctor
int a1 = x1.a;
int a2 = x2; // ERROR type mismatch
Y y1 = x1; // ERROR type mismatch

typedef X Z; // Z is now an alias for X

Z z1 = x1; // OK, Z and X are the same

int * ip; // pointer to int
const int * cip; // pointer to const int
int & ir = *ip; // reference to int

const int & cir = 2;
// reference to const int

typedef int * IP;
// IP is an alias for ’pointer to int’

typedef int & IR;
// IR is an alias for reference to int

IP ip2 = ip
// OK ip2 points to the same int as ip

IR ir2 = ir;
// OK ir2 refers to the same int as ir

const IP cip2 = cip;
// ERROR cip2 is a const pointer to a
// (non-const) int, not a pointer to a
// const int

int * ip3 = cip;
// ERROR ip3 is a pointer to a (non-
// const) int, not to a const int

const int * cip3 const = cip;
// OK cip3 cannot be changed later

77

Which function will be called depends on the type of the

arguments, but not on the type of the return value.

double abs(double d);
float abs(float f);
int abs(int i);
double abs(Vector3 p);
float abs(Vector3 p);// ERROR same argument

// type exists before

double d = abs(-14); // abs(int)
d = abs(-14.0); // abs(double)
short c = -3;
abs(c); // abs(int)

// short is ’promoted’
long l = -2;
l = abs(l); // ERROR ambiguous

LorentzVector q;
abs(q); // abs(Vector3)

// LorentzVector IsA
// Vector3

class MyLong {
public:

MyLong(long l): a(l) {}
long a;

};
MyLong sqr(MyLong);
sqr(2); // sqr(MyLong);

// User-defined conversion

class MyDouble {
public:

MyDouble(): a(0) {}
MyDouble(double d): a(d) {}
operator double() const { return a;}
double a;

};
MyDouble md;
md = abs(md); // abs(double)

// User-defined conversion

78

Promotion between built-in types:

char → short → int → long and float → double

but also

int → float, int → double, long → float, etc.

’float abs(float)’, ’double abs(double)’, ’double abs(Vector3)’

and ’double Vector3::abs()’ const have the same name in the

code, but they are different functions and will internally be

given a unique name. This is called name mangling. My

compiler names them abs__Ff, abs__Fd, abs__FG7Vector3 and

abs__C7Vector3.

Different compilers have different name mangling, you can

therefore not link together object files from different compilers.

79

When finding out which function to call, the compiler tries

different thing in the following order:

1. Try to find an exact match

2. Try to find a trivial conversion . (If the argument is const

int & any variable of type int, const int or int & is trivially

converted.)

3. Try to find a promotion. (eg. int→double)

4. Try to find a standard conversion. Eg. LorentzVector* can

be converted to a Vector3*

5. Try to find a user-defined conversion.

This is a simplification. The actual lookup-rules are very complicated, but luckily the

options are usually not many.

80

Function pointers

double sqrt(double);
double log(double);
int round(double);
double sqr(int);

typedef double (*DDFunc)(double);
// DDFunc is an alias for ’pointer to a function taking
// one double argument and returning a double’

double sumfn(double * v, int n, DDFunc fn) {
double sum = 0;
for (int i = 0; i < n; ++i)

sum += (*fn)(v[i]);
return sum;

}

double dvec[10];
double s = sumfn(dvec, 10, &sqrt);
s = sumfn(dvec, 10, &log);
s = sumfn(dvec, 10, &round); // ERROR bad return type
s = sumfn(dvec, 10, &sqr); // ERROR bad argument type

81

The syntax for function pointers can be rather confusing so it

is generally a good idea to make a typedef for the function

pointer type, as in the example on the previous slide.

C++ has inherited the notion of function pointers from C, where

they are very common. In C++ you will likely only use them if

your program uses software libraries written in C (for example

GSL for numerical stuff or SDL for graphics).

The C++ replacement (of sorts) for function pointers are functors (function

objects), which will be covered in lecture 6. In C++ there are also special

pointers to class member variables and functions, but we will not cover

those here.

82

Base class pointer to derived class

class Employee
{
public:

Employee(std::string s, int sal) :
theName(s), theSalary(sal) {}

int salary() const {
return theSalary;

}

int payCheck() const {
return salary();

}

private:
std::string theName;
int theSalary;

};

class Boss: public Employee
{
public:

Boss(std::string s, int sal, int b) :
Employee(s, sal), theBonus(b) {}

int bonus() const {
return theBonus;

}

int payCheck() const {
return salary() + bonus();

}

private:
int theBonus;

};

Boss * ceo = new Boss("Gill Bates", 10000, 200000);
std::cout << ceo->payCheck() << "\n"; // 210000
Employee * emp = ceo;
std::cout << emp->payCheck() << "\n"; // 10000

83

Virtual member functions

class Employee
{
public:

Employee(std::string s, int sal) :
theName(s), theSalary(sal) {}

virtual ~Employee() {}

int salary() const {
return theSalary;

}

virtual int payCheck() const {
return salary();

}

private:
std::string theName;

int theSalary;
};

class Boss: public Employee
{
public:

Boss(std::string s, int sal, int b) :
Employee(s, sal), theBonus(b) {}

virtual ~Boss() {}

int bonus() const {
return theBonus;

}

virtual int payCheck() const {
return salary() + bonus();

}

private:
int theBonus;

};

84

Employee * staff[10]; // An array of ten pointers to Employee
staff[0] = new Employee("John Smith", 10000);
staff[1] = new Boss("Gill Bates", 100000, 200000);
staff[2] = new Employee("Calvin Hobbes", 12000);
// ...

int sumpay = 0;
for (int i = 0; i < 10; ++i) {

sumpay += staff[i]->payCheck();
}

staff[0]->payCheck() will call Employee::payCheck() but

staff[1]->payCheck() will call Boss::payCheck()

Employee * e1 = staff[1];
e1->payCheck(); // Call Boss::payCheck()
Employee & e2 = *staff[1];
e2.payCheck(); // Call Boss::payCheck()

Employee e3 = *staff[1]; // Copy only Employee part
e3.payCheck(); // Call Emplayee::payCheck();

Boss IsA Employee. The one summing up the pay checks need

not know how the check is calculated, just that every Employee

has a way of doing it.

85

This is Polymorfism!

It is one of the most important ingredients of Object
Orientation. How does it work?

B
 o

 s s

Employee *staff

Employee *

Employee *

Employee::vtbl*

Boss::vtbl*

Employee::vtbl*

theSalary

theName

theName

theName

theSalary

theBonus

theSalary

&Employee::payCheck()

&Employee::~Emplyee()

&Boss::payCheck()

&Boss::~Boss()

E
m

p
ly

ee
E

m
p
ly

ee

E
m

p
ly

ee

86

When inheriting from a base class, the derived class inherits all

members. The member functions may however be overridden.

If a member function is declared virtual in the base class, it

will be overidden if a member function with the same name and

same signature is declared in the derived class. The member of

the derived class will then be called even if the object is

accessed though a pointer or a reference to the base class.

for (int i = 0; i < 10; ++i) delete staff[i];

delete staff[0]; will call ∼Employee(), but delete staff[1]; will

call ∼Boss() first and then ∼Employee()

Polymorphic classes must declare the destructor in the base

class virtual.

87

Abstract base clases
A triangle is a shape. A rectangle is a shape, A square is a
rectangle which in turn is a shape. So it seems natural to have
Shape as a base class for objects which are shapes.

class Shape {
public:

Shape() {}
Shape(const Shape &) {}

virtual ~Shape() {}

Shape & operator=(const Shape &) {
return *this;

}

virtual double area() const {
return 0;

}

};

class Triangle: public Shape {
public:

Triangle();
Triangle(const Triangle &);
Triangle(double b, double h);
virtual ~Triangle() {}
Triangle & operator=(const Triangle &);

double base() const;
double height() const;
void base(double);
void height(double);

virtual double area() const {
return base()*height()/2.0;

}

private:
double theBase;
double theHeight;

};

88

class Rectangle: public Shape {
public:

Rectangle();
Rectangle(const Rectangle &);
Rectangle(double b, double h);
virtual ~Rectangle() {}
Rectangle & operator=(const Rectangle &);

double base() const;
double height() const;
void base(double);
void height(double);

virtual double area() const {
return base()*height();

}

private:
double theBase;
double theHeight;

};

class Square: public Rectangle {
public:

Square();
Square(const Square &);
explicit Square(double side);
virtual ~Square() {}

void base(double);
void height(double);
// Both sets both the base and height

Square & operator=(const Square &);
};

Triangle tr(1.0, 3.0);
Square sq(4.0);
Rectangle re(1.0, 1.0);
Shape * s1 = &tr;
Shape * s2 = &sq;
Shape * s3 = &re;
Shape s; // OOOPS! what is

// a ’Shape’ object?

Shape, Triangle, Rectangle and Square build up a class hierarchy .

89

We can define a pure virtual function

class Shape {
public:

virtual ~Shape() {}

Shape & operator=(const Shape &) {
return *this;

}

virtual double area() const = 0;

protected:

Shape() {}
Shape(const Shape &) {}

};

Shape s; // ERROR Shape is abstract
// (and Shape() is protected)

Square sq(4.0);
Rectangle & re = sq; // OK A Suare IsA Rectangle
re.height(2.0); // OOOPS! sq is no longer a

// square

double somefn(const Square &);
// Some function taking a
// Square as argument

double d = somefn(sq);
d += somefn(3.0); // Error 3.0 is not

// convertible to Square
// since Square(double) was
// declared ’explicit’

d += somefn(Square(3.0));
// OK.

90

Any class with a pure virtual function is an abstract base class

and an object of this class cannot be instatiated.

A square is a rectangle in strict geometrical sense. But in C++

Square should not inherit from Rectangle.

Since a derived class can be accessed as its base class, it is

seldom a good idea to have a derived class which restricts the

behavior of the base class. (In Java, inheritance is declared as

“class Square extends Shape”.)

Constructors taking one argument of a different type causes

automatic type conversion. This may look pretty cool, but may

lead to bugs which are difficult to detect. Use explicit keyword

unless you are absolutely sure you want automatic type

conversion.

91

Multiple inheritance

A derived class may have several base classes

class Electric {
// abstraction for anything
// with electric proprties
// probably abstract base

public:

virtual ~Electric();
double conductivity() const;
// ...

};

class Thermal {
// abstraction for anything
// with thermal properties
// probably abstract base.

public:

virtual ~Thermal();
double meltingpoint() const;

};

class Material: public Electric,
public Thermal {

public:
// ...

};

Material * m = new Material;

Electric * e = m;

Thermal * t = m;

t = e; // ERROR

92

E
l
e
c
t
r
i
c

T
h
e
r
m
a
l

M

a

t

e

r

i

a

l

Material * Electric *

Thermal *

Multiple inheritance is not trivial. Can cause strange name

clashes e.g. if we have both Electric::conductivity() and

Thermal::conductivity(). Problems may also occur if Electric

and Thermal has a common base class (in which case we may

use virtual inheritance).

See CPL3 15.2

93

A pointer to a derived class can be automatically converted
(cast) to a pointer to its base class, but not the other way
around. You can use dynamic cast.

Square sq(1.0);
Shape * sp = &sq;
Rectangle * rp = sp; // ERROR
rp = dynamic_cast<Rectangle*>(sp); // This is allowed
Triangle * tp = dynamic_cast<Triangle*>(sp); // This is also allowed

// but sp does not point
// to a Triangle!

if (tp) std::cout << tp->base();
else std::cout << "Error" << std::endl;

dybamic cast only work on (pointers and references to) classes
with virtual functions. If the cast fails, dynamic cast returns 0.

Any pointer can be assigned the value 0. Also any pointer can
be converted into an integer and can be used in a conditional
expression. If the pointer is 0 the condition is false otherwise it
is true.

94

Forward declarations

In bubble chamber experiments we can measure tracks which

are connected with vertices.

Each track has a creation vertex and a decay vertex. Each

vertex has an incoming, and a number of outgoing tracks.

To define a class Track we need to know about Vertex and vice

versa. Which should we declare first? – a typical chicken–egg

situation.

95

// Track.h
#ifndef Track_H
#define Track_H

class Vertex; // Forward declaration

class Track {

// ...

public:
double distance() const;

private:
Vertex creationVertex;
// ERROR we cannot use actual objects
// of Vertex since it hasn’t been
// fully declared yet

Vertex * decayVertex;
// OK. We can handle pointers to an
// undeclared type as long as we do not
// try to access the object pointed to.

};
#endif

// Vertex.h
#ifndef Vertex_H
#define Vertex_H

#include <vector>
#include "Vector3.h"

class Track; // Forward declaration

class Vertex {

// ...

public:
const Vector3 & position() const;

private:
Track * incomingTrack;

std::vector<Track*> outgoingTracks

Vector3 thePosition;

};

#endif

96

// Track.cc
#include "Track.h"

double Track::distance() const {
return (creationVertex->position() - decayVertex->position()).mag();

}
// ERROR Vertex is still not fully declared

#include "Vertex.h"

double Track::distance() const {
return (creationVertex->position() - decayVertex->position()).mag();

}
// OK now.

97

The static keyword

const Vector3 xhat(1.0, 0.0, 0.0);
const Vector3 yhat(0.0, 1.0, 0.0);
const Vector3 zhat(0.0, 0.0, 1.0);
// unit vectors in the x,y,z directions
// ’But they pollute the namespace’

class Vector3 {
public:

static const Vector3 & xHat();
static const Vector3 & yHat();
static const Vector3 & zHat();

private:

static const Vector3 xhat;
static const Vector3 yhat;
static const Vector3 zhat;

};

const Vector3 & Vector3::xHat() {
return xhat;

}
const Vector3 Vector3::xhat(1.0,0.0,0.0);
// Defined exactly once in the program.

Vector3 p;
p.rotate(3.14, p.xHat());
p.rotate(3.14, Vector3::xHat());
p.rotate(3.14, p.xhat); // ERROR private

void somefn(double d) {
static int count = 0;
++count;
// Count calls to this function.
// ’count’ is set to 0 at first call.

}

static inline int sqr(int x) { ...
// Function is not exported to object
// file; may be useful in header files.

}

98

A static member variable gives one object which is common to

all objects of the class. It is accessed like an ordinary member

variable.

A static member function is like an ordinary one, but does not

have the hidden this argument and can therefore not access

non-static members.

All static class members are created before main() is called and

destroyed after main() has returned.

A static local variable in a function is created when the

statement is first executed, and is destroyed after main() has

returned.

99

Third Exercise
Write a hierarchy of classes that can be used to represent a mathematical
expression of one varible, x. Start from an abstract base class Expression
with this function:

// Returns the value of this expression given a value for x
virtual double evaluate(double x) const = 0;

The idea is that an expression such as x+ 5 can be handled as an Addition
that points to its two operands, a Variable (ie x) and a Constant (here: 5).
Write derived classes with suitable constructors, destructors, member
variables and implementations of evaluate. Note that Constant::evaluate
will ignore the value of x. Write the following classes, as described by the
declarations of their constructors:

// Evaluates to a constant value
Constant(double c);
// Evaluates to x
Variable();
// Evaluates to the sum of the two expressions
Addition(const Expression *e1, const Expression *e2);
// Evaluates to the product of the two expressions
Multiplication(const Expression *e1, const Expression *e2);

100

With these classes it should be possible to describe an expression such as
x(x+ 7) + 2 as follows:

Expression *e = new Addition(
new Multiplication(new Variable,
new Addition(new Variable, new Constant(7))),
new Constant(2));

std::cout << e->evaluate(0.5) << "\n"; // should print 5.75
delete e; // should delete all sub-expressions

When this works, add to Expression a function that returns the derivative of
the expression, and implement it in the derived classes.

virtual Expression * derivative() const = 0;

Usage example, with the same expression as above:

Expression *de = e->derivative();
std::cout << de->evaluate(0.5) << "\n"; // should print 8.0

Please submit your solution to carl@thep.lu.se no later than 12:00 on
Wednesday 9/4.

101

Third Exercise, solutions

class Expression {
public:

virtual ~Expression();
virtual double eval(double x) const = 0;
virtual Expression * deriv() const = 0;

};

class Constant: public Expression {
public:

Constant(double c): c(c) {}
double eval(double x) const override {

return c;
}
Expression * deriv() const override {

return new Constant(0);
}

private:
double c;

};

class Multiplication: public Expression {
public:

Multiplication(Expression *o1,
Expression *o2): op1(o1), op2(o2) {}

~Multiplication() {
delete op1; delete op2;

}
double eval(double x) const {

return op1->eval(x) * op1->eval(x);
}
Expression * deriv() const {

return new Addition(
new Multiplication(op1, op2->deriv()),
new Multiplication(op2, op1->deriv()));

}
private:

Expression *op1, *op2;
};

Destructors delete the sub-expressions but a) it’s easy to miss

some and b) we get two pointers to the same object in

Multiplication::deriv(). A crash is coming...

102

Solution 1: Clone the sub-expressions in Multiplication::

deriv() by adding virtual Expression * clone() const; to all

classes. Doesn’t solve problem of managing pointers.

Solution 2: Use a smart pointer like unique ptr or shared ptr to

solve one or both problems. We’ll see these soon...

Take-home message: Pointers, like arrays, should be used with

great care.

C++11 adds override and final for checking that a function

overrides a virtual function in a base class. See example in

Constant. A final function cannot be overridden in a derived

class (this allows devirtualization, a useful optimization).

103

Templates

double sqr(double x) {
return x*x;

}

int sqr(int x) {
return x*x;

}

float sqr(float x) {
return x*x;

}

double d = 3;
d = sqr(d);
// Uses double sqr(double)

template <typename T> // or <class T>
T sqr(T x) {

return x*x;
}

double d = 3;
d = sqr(d); // ’Instantiate’

// double sqr<double>(double)
// and call it.

Complex z(1.0,2.0);
z = sqr(z); // call Complex sqr<Complex>(Complex)

This is an example of Generic Programming.

104

A class can be templated.

template <typename T>
class vector {
public:

typedef T value_type;

explicit vector(int);
// create a vector of given size.

vector(const vector<T> &);

vector<T> & operator=(const vector<T> &);

T & operator[](int i);
const T & operator[](int i) const;
// subscript operator

int size() const;

private:

T * vec;
int theSize;
// The internal representation.

};

template <typename T>
vector<T>::vector(int sz)

: vec(new T[sz]), theSize(sz) {}

template <typename T>
vector<T>::vector(const vector<T> & v)

: vec(new T[v.theSize]),
theSize(v.theSize) {

for (int i = 0; i < theSize; ++i)
vec[i] = v[i];

}

template <typename T>
vector<T> & vector<T>::
operator=(const vector<T> & v) {

if (this == &v) return *this;
delete [] vec;
theSize = v.theSize;
vec = new T[theSize];
for (int i = 0; i < theSize; ++i)

vec[i] = v[i];
return *this;

}

template <typename T>
vector<T>::~vector() {

delete [] vec;
}

105

template <typename T>
T & vector<T>::operator[](int i) {

return vec[i];
}

template <typename T>
const T & vector<T>::
operator[](int i) const {

return vec[i];
}

template <typename T>
int vector<T>::size() const {

return theSize;
}

vector<int> iv(20); // instantiate the class
// vector<int>

iv[5] = 3; // uses non-const operator[]

vector<Complex> cv(30); // a vector of 30 Complex
cv[13] = Complex(1.0,3.0);

vector<long> lv = cv; // ERROR type mismatch

const vector<int> & civ = iv;
civ[2] = 42; // ERROR uses const

// operator[] which
// returns const int&

template <typename T>
T sumvector(const vector<T> & v) {

T sum = T();
for (int i = 0; i < v.size(); ++i) sum += v[i];
return sum;

}

template <typename Cont>
typename Cont::value_type sum(const Cont & c) {

typedef typename Cont::value_type T;
T sum = T();
for (int i=0; i < c.size(); ++i) sum += c[i];
return sum;

}

Complex sumz = sum(cv);

106

Member functions can be templated:

template <typename T>
class vector {
public:
// as before ...

template <typename U>
vector<T> & operator=(const vector<U> &);
// Assignment from vector of other type

};

template <typename T>
template <typename U>
vector<T> & vector<T>::
operator=(const vector<U> & v) {

if (this == &v) return *this;
delete [] vec;
theSize = v.theSize;
vec = new T[theSize];
for (int i = 0; i < theSize; ++i)

vec[i] = v[i];
return *this;

}

vector<int> iv(10);
vector<long> lv(30);
vector<Complex> cv(30);

lv = iv; // OK uses templated operator=

iv = cv // ERROR assignment from Complex
// to int in templated operator=

107

Template specialization

template <>
class vector<char> {
public:

vector(const vector<char> & v) {
: vec(new char[v.theSize]), theSize(v.theSize) {
memcpy(v.vec, vec, theSize); // memcpy is a standard

} // C function for
// copying raw memory

vector<char> & operator=(const vector<char> & v) {
if (this == &v) return *this;
delete [] vec;
theSize = v.theSize;
vec = new char[theSize];
memcpy(v.vec, vec, theSize);

}

// Reimplement all other members again.
};

vector<char> cv1(1000000);
vector<char> cv2 = cv1; // Uses memcpy;
vector<int> iv1(1000000);
vector<int> iv2 = iv1; // Still uses memberwise copy

108

Traits

template <typename T>
class CopyTraits {
public:

static void copy(T * tout,
const T *tin, int n) {

for (int i = 0; i < n; ++i)
tout[i] = tin[i];

}
};

template <typename T>
class vector {
public:

vector(const vector & v)
: vec(new T[v.theSize]),

theSize(v.theSize) {
CopyTraits<T>::copy(vec, v.vec, theSize);

}

// Similarly for operator=
// The rest as before.

};

template <>
class CopyTraits<char> {
public:

static void copy(char * tout,
const char *tin,
int n) {

memcpy(tout, tin, n);
}

};

template <>
class CopyTraits<double> {
public:

static void copy(double * tout,
const double *tin,
int n) {

memcpy(tout, tin, n*sizeof(double));
}

};

109

Partial template specialization

We can try to be even more general:

template <typename T>
class TypeTraits {
public:

static const bool trivial = false;
};

template <typename T,
bool Trivial = TypeTraits<T>::trivial>

class CopyTraits {
public:

static void copy(T * tout, const T *tin, int n){
for (int i=0; i < n; ++i) tout[i] = tin[i];

}
};

template <typename T>
class CopyTraits<T, true> {
public:

static void copy(T *tout, const T *tin, int n) {
memcpy(tout, tin, n*sizeof(T));

}
};

template <>
class TypeTraits<char>
public:
static const bool trivial = true;

};

template <>
class TypeTraits<int>
public:
static const bool trivial = true;

};

110

A templated function will not be instantiated for a given

template argument type/value unless it is called.

Compilers typically need to see the implementation of a

templated function when it is called – do not put templated

function definitions in .cc files.

Excessive templating increases the compile time, but there is in

general no run-time overhead.

Templates are difficult but very versatile.

111

template <unsigned int i>
class Factorial {
public:

static const unsigned long value = i*Factorial<i-1>::value;
};

template <>
class Factorial<1> {
public:

static const unsigned long value = 1;
};

template <>
class Factorial<0> {
public:

static const unsigned long value = 1;
};

int main() {
std::cout << Factorial<13>::value << std::endl;

} // Calculated at compile-time

112

template <typename T>
class MagVector {

// exactly like vector<T> above but:

public:

double mag(int i) const {
return (*this)[i].mag();

}

};

MagVector<Vector3> v3v(10);
// This is fine

MagVector<Complex> cv(20)
// Also fine

MagVector<int> iv(12);
// Fine, although int does not have a
// mag() member function

double d = iv.mag(3);
// ERROR: int does not have a
// mag() member function

113

Name lookup with templated functions is approximately as
follows: First the ordinary lookup of non-templated functions is
tried looking for an exact match or a trivial conversion. Then
templated functions are tried, where template argument
matching must be exact or via a trivial conversion. No other
templated functions are tried, but search for non-templated
functions continues with promotions, standard conversions and
user-defined conversions.

A templated function called with explicit template argument
(as in sqr<double>(2);) is treated like any other non-templated
function call.

double max(double d1, double d2) {
return d1 > d2? d1: d2;

}

template <typename T>
T max(T t1, T t2) {

return t1 > t2? t1: t2;
}

int i = 1;
long l = 2;
float f = 3;
double d = 4;

max(l, l); // max<long>
max(i, l); // max(double,double) note that no

// conversions are tried to find
// suitable template function

max(f, d); // max(double,double)
max(f, f); // max<float>

114

Namespaces and resolution

Different variables, functions and types may have the same
name in C++. The scope resolution operator :: is sometimes
needed to access the right variable etc.

int pi = 0;

class MathConstants {
public:

static const double pi = 3.14159265358979323846;
static const double e = 2.7182818284590452354;
static const double sqrt2 = 1.41421356237309504880;

};

void somefn(int & j) {
int pi = 0;
++pi; // Increment local pi
::pi = 4; // set global pi
double d = 2*MathConstants::pi; // Use static member

}

115

We can use a namespace to logically separate out identifiers

namespace MathConstants {
const double pi = 3.14159265358979323846;
const double e = 2.7182818284590452354;
const double sqrt2 = 1.41421356237309504880;

// all these identifiers can be accessed though MathConstants::

}

double e = 3.0;

using MathConstants::pi; // Make ’pi’ available in this scope.
double d = std::sin(pi/e); // Uses MathConstants::pi;
d *= MathConstants::sqrt2;
d *= sqrt2; // ERROR no ’sqrt2’ declared
using namespace MathConstants; // Make all identifiers from

// MathConstants available.
d *= sqrt2; // OK now
d += std::sin(pi/e); // ERROR ambigous which ’e’?

A using directive adds identifiers into the current scope.

116

All types, functions and objects in the C++ standard library are

in namespace std. Recall standard I/O: std::cout, or the

functions in <cmath> such as std::sqrt(double).

Namespaces are very important when designing code to be

used by others. The need for them in small projects is not as

obvious.

We want to have the code as readable as possible - this calls

for simple and descriptive names on types and functions. But

simple names often give name clashes. E.g. the standard library

defines a character string type called string. In High Energy

Physics we can treat the field between quarks as a string-like

field – we may like to call this class of objects string.

117

We could also have different implementations of the same

concept. We previously defined a vector class. The same is

defined in <vector> doing (approximately) the same thing.

#include <vector>

namespace MyClasses {

template <typename T>
class vector {

// same as before ...
};

}

int somefn() {

using MyClasses::vector;
// Change this to ’using std::vector’
// to use the standard implementation
// Nothing else need to be changed

using std::string;

vector<double> dv(10);

dv[9] = 2.8;

string s = "Hello";

}

118

A namespace can be aliased:

namespace MyStd = std;
// namespace MyStd = SomeOtherProvidersStd;

// ...

MyStd::vector<int> iv;

Namespaces are open

namespace MyClasses {
class X;

}

namespace MyClasses {
class Y; // Both classes X and Y are declared

} // in MyClasses

119

Namespaces can be nested:

namespace MyProject {

namespace MathClasses {

class Complex;

}
}

Namespaces are transitive

namespace MyClasses {
using std::vector;
// ...

}

MyClasses::vector<int> iv;

120

Avoid using directives in header files.

In particular, never import a whole namespace in header files

neither in the global namespace or in a named namespace.

// MyClasses.h

using namespace std;

// Whatever...

// MyClasses.h

namespace MyClasses {

using namespace std;

}

Possible users of your code may want to be able to use other

implementations of e.g. the standard library.

121

The standard C++ library

The C++ standard specifies a number of standard classes and
functions to be supplied with a standard-conforming compiler.

All identifiers declared by the standard library are defined inside
namespace std {}.

Some functions have been inherited from C, these are found in
the header files such as

• <cstring> functions associated with C-style character strings

• <cmath> the standard mathematical functions. Also
definition of some constants such as M PI.

• <ctime>

• <cstdio>

122

The C++-specific library can be divided into

• Character string stuff in <string>, . . .

• I/O stuff in <iostream>, <fstream>, <sstream>, . . .

• Containers in <vector>, <list>, <set>, <map>, <iterator>, . . .

• General utilities in <utility>, <algorithm>, <memory>,

<functional>. . .

• Numeric stuff in <complex>, <valarray> and <numerics>.

• . . .

123

Utilities

You only need to define bool T::operator==(const T &) const;

and bool T::operator<(const T &) const; for a given class T,

the other comparison operators are defined as templates in

<utility>.

Templated min and max functions are declared in <algorithm>

The useful class pair<T1, T2> is defined in <utility>

124

Smart pointers are in the header file <memory>. See CPL4 34.3.

A unique_ptr<T> is a wrapper around a pointer to a T such that

the object is deleted when the pointer is destructed. As the

name implies, the pointer cannot be copied (but moved).

A shared_ptr<T> is more powerful but more expensive. It does

reference counting, and deletes the object when the last

pointer to it is destructed.

For both pointer types, the objects must be created with new.

A good way to create a shared_ptr is with make_shared :

shared_ptr<Expression> expr;
expr = make_shared<Multiplication>(op1, op2->deriv());
// as opposed to:
expr = shared_ptr<Expression>(new Multiplication(op1, op2->deriv()));

125

Fourth Exercise

• Rewrite your Expression class hierarchy from the Third
Exercise using shared_ptr<Expression> instead of bare
pointers. A typedef for this pointer type may come in
handy.

• Define operators for multiplication and addition of
expressions (via shared ptr<Expression>) so that you don’t
have to call the constructors explicitly everywhere else. Pay
attention to const-correctness: use shared ptr<const

Expression> where appropriate. Use these operators where
possible.

• Place your classes and operators in their own namespace.
Don’t import the entire namespace in your main; instead
verify that the operators are found even though they are in
a namespace.

126

• The function std::pow(a, b) computes ab for floating point

types. Implement pow(expr, double) in terms of a new

Expression subclass called Power.

• Define template<class T> T sqr(const &T) which squares its

argument. It could be costly to evaluate the same

expression twice as Expression::evaluate would do, so

specialize sqr for your expressions using pow(expr, 2)

• dynamic_pointer_cast<T>(shared_ptr<U>) is the “smart”

equivalent of dynamic_cast<T*>(U*). Use this in your

addition operator to detect addition with the constant 0

and optimize this case appropriately.

127

Fourth Exercise, solution

A commented solution to the exercise can be found at

http://cbbp.thep.lu.se/~carl/cpp/expressions_ex4.cc

128

std::string

Recall the problems with C-style strings. They were

implemented as pointers to arrays of characters – adding and

copying pointers is not the same as adding and copying the

character strings themselves.

There are two standard character string types defined in

<string>: string and wstring (for 16-bit characters). They are

typically declared as follows:

template <class charT,
class traits = string_char_traits<charT>,
class Allocator = alloc >

class basic_string;

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

129

std::string works as expected.

using std::string;
string s1, s2, s3;

s3 = s1 + s2; // Concatenation
// and assignment

s1 = "Hello"; // Automatic conversion
// from c-strings

const char * cp = s2; // ERROR: no conversion
// to c-string

cp = s2.c_str(); // OK, and is 0-terminated

s1 += ’!’; // Concatenation with character.

char c = s2[3]; // Indexing.

if (s1 == s2); // Check for equivalence

if (s1 < s2); // Lexicographical comparison

std::cout << s3; // Stream I/O

130

In addition there are member functions such as insert, find,

rfind, find_first_of, find_last_of, find_first_not_of,

find_last_not_of, replace, substr all with different arguments.

The position of a character in the string (as returned by the

find functions or as arguments to the insert/append/replace

functions) is described by an integer of a type which is

typedefed to std::string::size_type

std::string has a static const member

const std::string::size_type std::string::npos representing

no-position when returned by the find functions

string s1 = "Hello";
int h = s1.find(’H’);
if (h != string::npos)

s1[h] = ’h’;

131

Never use C-style strings

Always use std::string

132

Exceptions

template <typename T>
T & vector<T>::operator[](int i) {

if (i >= size()) // Panic! What to do here?
return vec[i];

}

There are basically five ways of dealing with run-time errors

1. Abort the program and dump core. Fine, but let’s try to do

better.

2. Call a user-supplied error function. IEEE standard specifies

a matherr function.

3. Return an impossible value I.e LorentzVector::mag() returns

-sqrt(-mag2()) above. Not always possible.

4. Set a global error variable. Fine, but what if no one checks?

5. Throw an exception!

133

class OutOfRange {
public:

// Whatever
};

template <typename T>
T & vector<T>::operator[](int i) {

if (i < 0 || i >= size())
throw OutOfRange();
// create an OutOfRange object
// and throw it

return vec[i];
}

vector<int> iv(10);
int i, j;
while (1) {

std::cin >> i >> j;
try {

iv[i] = j;
break;

}
catch (OutOfRange) {

std::cout << "Out of range! try again!";
}

}

An exception can be an object of any type.

To be able to catch an exception thrown from a function, you
must enclose the function call in a try block followed by catch

statements.

The catch statment looks like a function definition, and normal
argument matching is done. If the thrown object cannot be
converted to the any of the types in the catch statements, the
exception is not caught but is passed to the next enclosing try
block.

134

A try block can be followed by several catch statements

class MathError{};
class Overflow: public MathError{};
class ZeroDivide: public MathError{};

// ...

try {
// ...

}
catch (ZeroDivide) {

// Handle divide by zero here.
}
catch (MathError) {

// Handle any other MatheError here
}
catch (...) {

// Handle any other exception here
}

The catch statements are tried in order. If one with matching
argument is found this one is executed and the rest are ignored,
otherwise the next is tried.

135

Functions can declare what exceptions they throw, but this is

deprecated. C++11 instead adds noexcept which allows certain

optimizations. (For more info, read the book.)

class OutOfRange{};

template <typename T>
class vector {
public:

int size() const throw();
// Does not throw any exception

// C++11 equivalent:
// int size() const noexcept;

T & operator[](int) throw(OutOfRange);
// may throw an OutOfRange

vector<T> & operator=(const vector<T> &);
// may throw any exception

// ...

};

template <typename T>
int vector<T>::size() const {

return theSize;
}
// ERROR! must have the same ’throw’ specs

int somefn(vector<int> & iv, int i)
throw() {
return iv[i];

}
// OOPS! not true. operator[] may throw.
// The compiler is not required to give
// an error

136

If no matching catch statement is found, std::terminate() is
called to terminate the program.

Exceptions are ordinary objects and may carry information.
They can be caught by value or by reference.

std::exception is the base class of some standards exception
classes. It has a fairly minimal interface, with a message string.

#include <stdexcept> // standard exceptions

template <typename T>
T & vector<T>::operator[](int i) {

if (i < 0 || i >= size())
throw std::range_error("out of range in vector");

return vec[i];
}

try {
// ...

}
catch (const std::range_error & rerr) {

std::cerr << rerr.what() << std::endl;
}

137

If you call a function which may throw an exception you do not

know how to handle, but you may e.g. need to do some

cleanup you can catch the exception and re-throw it.

double f(int);

double g(int i) {
try {

f(i);
}
catch (std::range_error) {

std::cerr << "Something went wrong. "
<< "Hopefully someone else can fix it."

throw;
}

}

138

An exception is not necessarily an error. It simply tells you that
the called function could not do what it was supposed to.

You could use exceptions for other things. E.g. inside nested
loops, where a break statement only exits the inner-most loop,
throwing an exception can be used to exit the whole loop.
Exceptions should be saved for exceptional events, not least
because they can be very expensive to handle.

vector< vector<int> > matrix;
// ...
bool done = false;
for (int i = 0; i < 10; ++i) {

for (int j = 0; j < 10; ++j) {
if (matrix[i][j] == 0) {

done = true;
break;

}
}
if (done) break;

}

vector< vector<int> > matrix;
// ...
try {

for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 10; ++j) {

if (matrix[i][j] == 0) throw true;
}

}
}
catch (bool) {}

Exceptions are new to C++.

Exceptions are difficult.

139

Enumerations

namespace MySpace {

const int hearts = 0;
const int spades = 1;
const int diamonds = 2;
const int clubs = 3;

}

using namespace MySpace;
int suit = hearts;

suit = 1;
suit = 14;

namespace MySpace {

enum CardSuit {
hearts, spades,
diamonds, clubs };

}

using namespace MySpace;
CardSuit suit = hearts;

int i = suit; // All enum types are
// convertible to int

suit = 1; // ERROR type mismatch
suit = CardSuit(14); // OK

enum introduces a new integer type, and a number of constant

values of that type. The integer type is guaranteed to be big

enough to hold all the constants.

140

namespace QM {

enum Colour {
triplet = 3, anti_triplet = -3,
singlet = 0, octet = 8,
undefined = -99999 };

enum Parity {
positive, negative,
undefined }; // ERROR undefined already

// defined

}

141

Input and Output in C++

The C++ standard requires a number of classes for providing
input and output of streams of characters.

The standard <iostream> contains the declaration of the
std::istream and std::ostream classes representing general
input and output streams respectively. It also contains
definitions of the objects std::cin, std::cout and std::cerr for
the standard input, output and error streams connected to the
calling process.

The file <fstream> contains definitions of the std::ifstream and
std::ofstream classes for input and output connected to named
files.

The file <sstream> contains definitions of the
std::istringstream and std::ostringstream classes for input and
output from/to std::string objects in memory.

142

I/O of objects are performed with the left- and right-shift

operators. These were inherited from C and are used to shift

the bit pattern of integers to the left or right:

int i = 16;
int j = i >> 2; // Shift all bits two steps

// to the right eg. divide by 4
int k = j << 2 << 3; // Shift the value of j 2 steps to the left.

// Then shift the resulting bit pattern 3
// more steps to the left

143

In <iostream> these operators are defined as member functions

of the istream and ostream approximately as follows:

class ostream {
public:

ostream & operator<<(int);
ostream & operator<<(double);
// etc...

};

void somefn(ostream & os) {
int i = 42;
double d = 3.14;
os << i << d; // is equivalent to
(os.operator<<(i)).operator<<(d);

}

class istream {
public:

istream & operator>>(int &);
istream & operator>>(double &);
// etc...

};

void somefn(istream & is) {
int i;
double d;
is >> i >> d; // equivalent to
(is.operator>>(i)).operator>>(d);

}

144

istream defines operator>> for all fundamental types. Similarly
ostream defines operator<< for all fundamental types.

To implement I/O for user-defined types we use non-member
(global) left- and right-shift operators:

ostream & operator<<(ostream & os,
const Complex & z) {

os << "(" << z.real() << ","
<< z.imag() << ")";

return os;
}

istream & operator>>(istream & is,
Complex & z) {

// Handle all cases ’float’, ’(float)’
// and ’(float,float)’
double re = 0;
double im = 0;
char c = ’\0’;

is >> c;
if (c == ’(’) {

is >> re >> c;
if (c == ’,’) is >> im >> c;
if (c != ’)’) throw ios::failure(is);

} else {
is.putback(c);
is >> re;

}
if (is) z = Complex(re, im);
return is;

}

145

Error handling in I/O streams are not done with exceptions.
Instead a stream will be put in a bad state after an error. This
must be checked.

There is an implicit conversion from istream and ostream to an
integer value to be used in conditional statements:

char c;
while (cin >> c) cout << c;

Also the unary not operator is defined

if (!cin) {
cerr << "Something went wrong. ";
cerr << "Maybe read beyond EOF.";

}

Also the following member functions are defined:
bool good() const; (the next operation might succeed),
bool eof() const; (end of input reached),
bool fail() const; (the next operation will fail) and
bool bad() const; (the stream is corrupted).

146

Output formatting

There are a number of ways to tell an ostream how to format
the output. Here are some examples:

cout.setf(ios::oct, ios::basefield); // Set the basefield flag for
// octal output of integers

cout << 42 << endl; // output: ’52’
cout.width(5); // next format had width 5
cout << 42 << endl; // output: ’ 52’
cout << 42 << endl; // output: ’52’
cout.width(5);
cout.fill(’#’);
cout << 42 << endl; // output: ’###52’
cout.width(5);
cout.setf(ios::left, ios::adjustfield);
cout << 42 << endl; // output: ’52###’
cout.setf(ios::dec, ios::basefield); // Set the base to decimal
cout.width(5);
cout << 9999999 << endl; // output: ’9999999’
cout << 1.234567890 << endl; // output: ’1.23457’
cout.precision(3);
cout << 1.234567890 << endl; // output: ’1.23’
cout.setf(ios::scientific, // use ’scientific’ format

ios::floatfield); // of floats
cout << 1.234567890 << endl; // output: ’1.235e+00’

147

Stream Manipulators

iostream has the following operator member defined:

ostream & ostream::operator<<(ostream & (*omanip)(ostream &)) {
return (*omanip)(*this);

}

This enables you to do things like:

ostream & setoct(ostream & os) {
os.setf(ios::oct, ios::basefield);
return os;

}

cout << setoct << 34 << endl; // ouput: ’42’

Standard manipulators are defined in <iomanip>.

148

<iomanip> also defines manipulators taking arguments. It works

approximately like this.

class IntManip {
public:

IntManip(void (*fn)(ostream &, int), int in)
: func(fn), i(in) {}

void (*func)(ostream &, int);
int i;

};

ostream & operator<<(ostream & os, IntManip & m) {
m.func(os, m.i);
return os;

}

void set_precision(ostream & os, int i) {
os.precision(i);

}

IntManip setprecision(int i) {
return IntManip(set_precision, i);

}

cout << setprecision(3) << 1.23456789 << endl; // output: ’1.23’

149

file streams

The ofstream and ifstream clases are defined in <fstream>

ofstream os("filename.dat"); // Open a file for output

os << 42 << endl; // used as an ostream. In fact
// ofstream IsA ostream

os.close(); // close the file
os.open("anotherfile.dat"); // open another file associated

// with the same ofstream object.

int readnumber(string file) {
ifstream is(file); // Open a file for input. Before C++11 you

// would have to say file.c_str()
int i;
is >> i;
return i;

} // The file is safely closed when the
// ifstream object is destructed

int j = readnumber("filename.dat");

150

String Streams

You can use ostringstream and istringstream as defined in

<sstream> to e.g. convert between character strings and

numbers

ostringstream os;
os << 42;
string s = os.str(); // s is now "42"

istringstream is(s);
int i;
is >> i; // i is now 42

static inline int toint(const std::string &s)
{

std::istringstream ss(s);
int i;
ss >> i;
if(!ss || !ss.eof()) // Was the whole string used?

throw "error converting ’" + s + "’ to int";
return i;

}

151

Fifth Exercise

Wouldn’t it be nice if we could read those expressions from a

file instead of having to put them into the program in that

strange notation?

Using strings and streams, write a parser for equations.

To keep things simple, you can require whitespace between

tokens in the input stream, so you can read one token at a

time from the stream using >>. Example:

x + x * 2 + 15

In order to implement operator precedence correctly (* before

+), I recommend writing a recursive function that keeps

track of the precedence outside of the current subexpression, e.g.

shared_ptr<Expression> parse(std::istream &in, int precedence);

152

Containers and Iterators

In almost all code you will need to use containers of different

kinds, and you need to be able to loop over the objects inside a

container.

The simplest container is an array:

double darr[100];
for (int i = 0; i < 100; ++i) {

somefn(darr[i]);
}

Looping over the elements in a container is called iterating.

Not all containers have objects which can be accessed through

the subscript operator, operator[].

153

Here is an alternative way of iterating through the objects of a

container using pointer arithmetics:

double darr[100];
for (double * it = darr; it != darr+100; ++it) {

somefn(*it);
}

An iterator is a generalization of a pointer. All container

classes in the standard library are associated with different

classes of iterators, which can be used in similar ways as

pointers can be used for arrays.

#include <vector>

vector<double> dv(100);
for (vector<double>::iterator it = dv.begin(); it != dv.end(); ++it)

somefn(*it);

// C++11 range-based for loop hides the iterator stuff
for (double v : dv)

somefn(v);

154

All standard-compliant containers must implement the member

functions begin() and end().

begin() must return an iterator pointing to the first object in

the container.

end() must return an iterator pointing to one past the last

object in the container. (For double darr[100], darr+100 points

to the next memory location after the array.) In general if the

iterator it points to the last object in a continer cont then

++it == cont.end() is true.

155

All iterator classes must have operator++(int) and operator++()

(pre- and post-increment) defined so that ++it and it++ make

the iterator point to the next object in the container.

All iterators must have operator*() and operator->() defined to

dereference and selecting a member of the object pointed to in

the container

All iterators must have operator== defined so that if and only if

two iterators, it1 and it2, point to the same object, it1 == it2

is true.

156

There are different categories of iterators

Output iterators are only guaranteed to have the increment

and the dereference operators.

Input iterators also have the member selection and equality

operators. (but the dereferenced object is not necessarily

assignable).

A forward iterator is both an output and input operator

A bidirectional iterator is a forward iterator but also have

decrement operators (operator--(int) and operator--()).

A random-access iterator is a bidirectional iterator but also

have the operators [], +, -, +=, -= and < defined.

157

The C++ standard specifies a number of standard container

classes. But the standard does not specify how they are

implemented, only how they should behave.

In particular, the CPU time behavior with increasing container

size of different operations is specified

container subscript middle front back iterator
type insert insert insert find category

vector const O(n)+ const+ O(n) random
list const const const O(n) bidirectional
deque const O(n) const const O(n) random
set O(log(n)) O(log(n)) bidirectional
map O(log(n)) O(log(n)) O(log(n)) bidirectional
multimap O(log(n)) O(log(n)) bidirectional

158

The ’const+’ for e.g. back insertions means that normally the

CPU time needed for such operations is independent of the size

of the vector, but sometimes the vector may need to

re-allocate all objects which is a O(n) operation.

In practice this means that a std::vector implementation nearly

always will allocate more objects than needed for the current

size.

Which container to choose depends on the operations you want

to do and how many object you want to store. Note that

although log(100) ≈ 5 you do not know the constant factor in

front.

159

std::vector
A vector is the container which is much like an ordinary array
(C++11 also adds std::array). The declaration is as follows:

template <typename T, typename Alloc = alloc>
class vector {
public:

typedef T value_type;
typedef value_type * pointer;
typedef const value_type * const_pointer;
typedef value_type & reference;
typedef const value_type & const_reference;
typedef /* implementation defined */ size_type;
typedef /* implementation defined */ difference_type;

// ...

};

size_type is the integer type used to give the size of the vector.
difference_type is the integer type used to describe the
difference between two iterators.
Alloc is a class which used to allocate new objects in the vector.

160

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

typedef /* implementation defined */ iterator;
typedef /* implementation defined */ const_iterator;
typedef /* implementation defined */ reverse_iterator;
typedef /* implementation defined */ const_reverse_iterator;

// ...

};

vector<T>::iterator is of random-access type.

vector<T>::const_iterator is the same but returns a const

reference when it is dereferenced.

vector<T>::reverse_iterator is an iterator where ++ steps one

step backwards in the vector (used with rbegin() / rend())

vector<T>::const_reverse_iterator is the same but returns a

const reference when it is dereferenced.

161

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

vector();
// An empty vector
explicit vector(size_type n, const value_type & t = T());
// A vector of size n with all objects initialized to t
vector(const vector<T, Alloc> &);
// Copy constructor

template <typename InputIterator>
vector(InputIterator first, InputIterator last);
// Constructor initialized from a range of iterators
// [first,last)

~vector();
// Destructor

// ...

};

162

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

iterator insert(iterator position, const value_type & t = T());
// Insert a copy of t before position. return position
iterator insert(iterator position, size_type n,

const value_type & t = T());
// Insert n copies of t before position. return position of the
// last inserted object

template <typename InputIterator>
void insert(iterator position, InputIterator first, InputIterator last);
// Insert copies of the objects in the range [first,last)
// before position.

void push_back(const value_type & t);
// Add a copy of t to the end

vector<T, Alloc> & operator=(const vector<T, Alloc> &);
// assignment

// ...

};

163

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

iterator erase(iterator position);
// Remove object at position. return pointer to the next object.

iterator erase(iterator first, iterator last);
// Remove objects in the range [first,last), return pointer to
// the object pointed to by last.

void pop_back();
// Remove the last element.

void clear();
// Remove all elements.

reference front();
const_reference front() const;
reference back();
const_reference back() const;

reference operator[](size_type i);
const_reference operator[](size_type i) const;

// ...

};

164

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// ...

};

// looping backwards over the vector:
vector<double> dv(100);
for (vector<double>::reverse_iterator it = dv.rbegin();

it != dv.rend(); it++) {
somefn(*it);

}

165

template <typename T, typename Alloc = alloc>
class vector {

// ...
public:

size_type size() const;
// The size
bool empty() const;
// size() == 0
size_type capacity() const;
// The allocated size capacity() >= size()

void resize(size_type n, const value_type & t = T());
// Change the size. If new objects need to be created
// copy from t

void reserve(size_type n);
// Change the capacity whithout changing the size
// If n < capacity() nothing happens.

// ...

};

166

#include <vector>
using std::vector;

vector<double> dv;

for (vector<double>::iterator it = dv.begin();
it != dv.end(); ++it) {

if (*it == 0) dv.push_back(2.0);
// What happens to ’it’ here?

}

If the size of a vector is increased so that the objects need to

be reallocated, all iterators pointing into the vector are

invalidated, and the effects of using them is undefined.

This can be predicted. If a vector is increased with n objects

and n <= capacity() - size() then no re-allocation is done.

Note that you can use reserve() to change the capacity.

167

std::deque

A deque (double-ended queue) is like a vector but also has

member functions void push front(const T &), void pop front()

and T & front().

The front operations are as efficient as the back operations.

Insertions in the middle are still expensive.

168

std::stack

A stack is a container adapter restricting a suitable container.

template <typename T, typename C = std::deque<T> >
class std::stack {
public:

typedef typename C::value_type value_type;
typedef typename C::size_type size_type;
typedef C container_type;

explicit stack(const C & cc = C()) : c(cc) {}

bool empty() const { return c.empty(); }
size_type size() { return c.size(); }

value_type & top() { return c.back(); }
const value_type & top() const { return c.back(); }

void push(const value_type & t) { c.push_back(t); }
void pop() { c.pop_back(); }

protected:
C c;

};

169

std::queue

template <typename T, typename C = std::deque<T> >
class std::queue {
public:

typedef typename C::value_type value_type;
typedef typename C::size_type size_type;
typedef C container_type;

explicit queue(const C & cc = C()) : c(cc) {}

bool empty() const { return c.empty(); }
size_type size() { return c.size(); }

value_type & back() { return c.back(); }
const value_type & back() const { return c.back(); }
value_type & front() { return c.front(); }
const value_type & front() const { return c.front(); }
void push(const value_type & t) { c.push_back(t); }
void pop() { c.pop_front(); }

protected:
C c;

};

Neither stack or queue have iterators defined. (If you need them
you probably didn’t need a stack or a queue.)

170

std::list

list has efficient insertions anywhere. On the other hand it
does not have a subscript operator and only bi-directional
iterators.
A list is typically built up from list items

template <typename T, typename Alloc = alloc>
class std::list {

class list_item {
public:

T t;
list_item * prev;
list_item * next;

};

list_item * head;
list_item * last; // always point to an empty object.
// ...

};

Iterators into a std::list is never invalidated except if the
object it points to is erased.

171

Associative containers

An std::map associates a given key with a value.

#include <map>
using std::map;

map<string,int> ages;

ages["Jill"] = 4;
ages["Jack"] = 5;

std::cout << ages["Jack"] << std::endl;

for (map<string,int>::iterator it = ages.begin();
it != ages.end(); ++it) // Should write:

std::cout << it->first << " is " << it->second // Jack is 5 years old
<< " years old" << std::endl; // Jill is 4 years old

172

The elements of a map are automatically ordered according to

their key.

template <typename Key, typename T, typename Cmp = less<Key>,
typename Alloc = alloc>

class std::map;

template <typename T>
class std::less {
public:

bool operator()(const T & t1, const T & t2) const {
return t1 < t2;

}
};

The requirement on the Key type is that class less<Key> exists

and makes sense. Or that map is given a template argument of

class Cmp with

bool Cmp::operator()(const Key &, const Key &) const; defined.

173

template <typename T1, typename T2>
class std::pair {
public:

T1 first;
T2 second;

};

map<Key,T>::iterator points to a pair<const Key,T> and is

bi-directional. We cannot change the key of an object, but we

can change the object for a given key.

map<int,double> intmap;

intmap[1] = 2.0; // Works like a sparse vector

for (map<int,double>::iterator it = intmap.begin();
it != intmap.end(); ++it)

cout << it->first << ’\t’ << it->second << endl;

A map is typically implemented as a binary tree, to be able to

achieve O(log(n)) efficiency for subscript and find operations.

174

template <typename Key, typename T, typename Compare = less<Key>,
typename Alloc = alloc>

class map {
public:

typedef Key key_type;
typedef T data_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef /* implementation defined */ value_compare;
// Comparisons between pair<const Key, T>

typedef /* implementation defined */ pointer;
typedef /* implementation defined */ const_pointer;
typedef /* implementation defined */ reference;
typedef /* implementation defined */ const_reference;
typedef /* implementation defined */ iterator;
typedef /* implementation defined */ const_iterator;
typedef /* implementation defined */ reverse_iterator;
typedef /* implementation defined */ const_reverse_iterator;
// Bidirectional iterators

typedef /* implementation defined */ size_type;

// ...

};

175

template <typename Key, typename T, typename Compare = less<Key>,
typename Alloc = alloc>

class map {
public:

// ...

map();
explicit map(const Compare& comp);
// We can have different Compare object for different
// objects of the same map class (why?)

template <typename InputIterator>
map(InputIterator first, InputIterator last);
template <typename InputIterator>
map(InputIterator first, InputIterator last, const Compare& comp);
// Iterators must point to pair<const Key, T>

map(const map<Key, T, Compare, Alloc>& x);

map<Key, T, Compare, Alloc>&
operator=(const map<Key, T, Compare, Alloc>& x);

key_compare key_comp() const;
value_compare value_comp() const;

// ...

};

176

template <typename Key, typename T, typename Compare = less<Key>,
typename Alloc = alloc>

class map {
public:

// ...

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
bool empty() const;
size_type size() const;
size_type max_size() const;

T& operator[](const key_type& k);
// If no Key k is present create a new entry and return a reference
// the T object.
// Note: no const operator[]

// ...

};

177

template <typename Key, typename T, typename Compare = less<Key>,
typename Alloc = alloc>

class map {
public:

// ...

pair<iterator,bool> insert(const value_type& x);
// pair<iterator,bool>::second is false if key existed before
iterator insert(iterator position, const value_type& x);
template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void clear();

// ...

};

178

template <typename Key, typename T, typename Compare = less<Key>,
typename Alloc = alloc>

class map {
public:

// ...

iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
// Returns end() if key k is not present.

size_type count(const key_type& k) const;
// Returns 1 or 0

iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k);
// First entry with key >= k or end()

iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;
// First entry with key > k or end()

pair<iterator,iterator> equal_range(const key_type& k);
pair<const_iterator,const_iterator> equal_range(const key_type& k) const;
// return pair<iterator,iterator>(lower_bound(k), upper_bound(k));

};

179

std::multimap

std::multimap is like std::map but many objects can have the

same key.

For obvious resaons multimap does not have operator[] or

find(). On the other hand, the count(), lower_bound(),

upper_bound() and equal_range() makes more sense.

std::unordered_map

std::unordered map is new in C++11. Works like an ordinary map,

but also takes a hash function as template argument. If you

think you need a hash table, use std::map, and if you find that

you really need a performance increase, try unordered_map.

180

std::set

Is like a map where the key of an object is the object itself. Can

be used as a self-sorting list.

set<T>::iterator is bidirectional and points to the object itself.

operator[] makes no sense for set.

181

Note that all containers are containers of objects. If you want

to store polymorphic objects such as Shapes, you may be in for

a surprise.

#include <list>
#include "Shape.h"
#include "LorentzVector.h"

std::list<Vector3> vectorList;
LorentzVector q;
vectorList.push_back(q); // Only Vector3 part is

// copied into the list.
std::list<Shape> shapeList; // ERROR: Shape is an abstract base class.
std::list<Shape &> shapeList; // ERROR:
std::list<Shape *> shapeList; // OK

Rectangle r;
shapeList.push_back(&r); // OK

Containers are great for managing object lifetime. Combine

with unique_ptr or shared_ptr if you need managed pointers to

objects.

182

Function objects

A function object is any object of a class with operator()

defined.

Note that operator() is the only operator which does not have

a fixed number of arguments.

We have already seen less<T> which defines

bool operator()(const T &, const T &) const;. This is an

example of a predicate function object. Also other such

function classes are defined: equal_to<>, greater_equal<>, etc.

Other standard function classes are plus<>, minus<>,

multiplies<> etc.

183

Algorithms
The standard library contains a number of algorithms for
containers, based on knowing the iterators to the first and (one
past) the last objects. They also rely on function objects.

template <typename InputIterator, typename Function>
Function std::for_each(InputIterator first, InputIterator last, Function f) {

for (; first != last; ++first) f(*first);
return f;

}

template <typename InputIterator, typename T>
InputIterator std::find(InputIterator first, InputIterator last,

const T& value) {
while (first != last && *first != value) ++first;
return first;

}

template <typename InputIterator, typename Predicate>
InputIterator std::find_if(InputIterator first, InputIterator last,

Predicate pred) {
while (first != last && !pred(*first)) ++first;
return first;

}

184

#include <algorithm>

class sumit {
public:

sumit() : sum(0) {}
sumit(const sumit & s): sum(s.sum);

void operator()(double x) {
sum += x;

}

operator double() const {
return sum;

}

private:
double sum;

};

double dv[100];

double sum = std::for_each(dv, dv+100, sumit());

185

template <typename InputIterator, typename OutputIterator>
OutputIterator std::copy(InputIterator first, InputIterator last,

OutputIterator result) {
while (first != last) *result++ = *first++;
return result;

}

template <typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator dont_copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred) {
for (; first != last; ++first)

if (!pred(*first)) *result++ = *first;
return result;

}

class even {
public:

bool operator()(int i) {
return !(i%2);

}
};

vector<int> iv1;
// fill iv1
vector<int> iv2;
dont_copy_if(iv1.begin(), iv1.end(), iv2.begin(), even());
// OOOPS iv2.begin() points to nonsense since iv2 has size 0.

dont_copy_if(iv1.begin(), iv1.end(), back_inserter(iv2), even());

186

Exercise Six A: Molly Malone

Dublin fishmonger Molly Malone writes down her sales in a file:

cod halibut halibut

cod herring halibut

Your task is to process this information. Write a program that
takes the name of a file (using argc and argv), and makes a
summary of the sales sorted by the number of fish:

3 halibut

2 cod

1 herring

Hints: You may want to first try without sorting the output. A
map is good for counting how many there are of each species.
Each output line is a pair of a number and a string. Sorting
backwards or printing backwards will give the same result.

187

Exercise Six B: ODE solver
Starting from a solution to Exercise 5, e.g.
http://cbbp.thep.lu.se/~carl/cpp/expressions_ex5.cc, extend the
expressions to multiple variables.

parseexpressions will have to figure out what’s variable names in the
expressions. Put the function into a class to help it hold the required
mapping between variable names and indexes.

Hint: If m is a map<string,size_t> then m.insert(make_pair(str, m.size()))
only alters m if str isn’t already a key. Do this for n different keys and they
will get values 0, . . . , n.

A reasonable design choice is to let the Variable class know the index of its
variable, and let evaluate() take a vector of variable values
(vector<const double> &). Printing the Variable objects with names
becomes more difficult unless you also let them know the variable name.

If you get this to work, write an ODE solver using e.g. the Euler method.
That is, interpret n equations of n variables as the time derivatives of the
variables. Start from some state, compute the derivatives, take small steps
in the variable values and keep stepping until time τ .

xi(t+ h) = xi(t) + hf(x1(t), . . . , xn(t))

188

Exercise six A, solution

#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <vector>
#include <algorithm>

int main(int argc, const char **argv)
{

// Check argument count
if(argc != 2) {

std::cerr << "usage: " <<
argv[0] << " fishfile\n";

return 1;
}

// Open file
std::ifstream in(argv[1]);
if(!in) {

std::cerr << "failed to open " <<
argv[1] << "\n";

return 1;
}

// Read and count fish, summarized by name
std::map<std::string, int> fishcount;
std::string s;
while(in >> s)

fishcount[s]++;

// Flip the order in the pairs and
// store them all in a vector
std::vector<std::pair<int,

std::string>> countfish;
for(auto p : fishcount) {

countfish.push_back(
std::make_pair(p.second, p.first));

}

// Sort by count, descending, then print
sort(countfish.rbegin(), countfish.rend());
for(auto p : countfish) {

std::cout << p.first << " " <<
p.second << "\n";

}
}

189

Object Oriented Software Design

Leif says:

1. Formulate your problem in a spoken language.

2. Identify nouns with classes/objects.

3. Identify verbs with (member) functions.

Before starting coding, think very carefully about which classes

are needed and how they interact.

In addition, adjectives may indicate inheritance or template

class specialization. Adverbs may be template function

specializations.

I think this approach may obscure the main issues.

190

Choosing the right tools

Describe your project in terms of parts that have small

interfaces to other parts.

Can you find a hierarchy where parts don’t need knowledge of

the context they are used in?

Think in terms of objects and containers. If you have a bunch

of things, you can probably use a vector. Should the bunch

then be its own class with additional variables and functions?

Can you avoid new and delete by using containers and

automatic variables.

191

Do you need to mix different classes of objects?

Can it be solved by variables in the objects (different data or

pointers to different objects of some other class) or do you

need completely different objects? If so, you need

polymorphism (virtual functions and all that).

Don’t overdo it – polymorphism can be expensive and may be

unsuitable for some scientific computation.

A guiding principle: Aim to never replicate information unless

it’s needed for optimization.

192

Rules and recommendations

Leif’s Rule 1: All rules have exceptions

Carl’s Rule 2: Aim to never replicate information unless it’s

needed for optimization.

193

Comments

C++ is a language. Written code should be readable – but only
to people who speak C++. Do not write unnecessary comments.

b = a; // b is equal to a

Put comments at

• the beginning of each file,

• the definition of each class,

• the declaration of each (member) function.

• In long function definitions (which should be avoided),
comment distinct parts of the code.

• In any function definition, comment difficult to read code
e.g. containing tricks

194

Put declarations in header files. The reader should be shown as
little of the implementation and data representation as
possible. (PIMPL is useful if you really want to hide things.)

// This is a dummy class
class dummy {
// ...
public:

double x() const {
return theX;

}
};

#ifndef dummy_h
#define dummy_h
// This is a dummy class
class dummy {
// ...
public:

inline double x() const;
// The x component;

};
#endif

Put inline and template function definitions in separate files
and #include them in the header file.

The header file should work like a UNIX man-page, where the
usage of the class is documented.

Only one class per header file. The name of the header file
should be the same as the class name.

195

Always define a default constructor, copy constructor and

assignment operator for all classes.

If any of these does not make sense, make them private (or

delete them in C++11).

Even if the definition is empty or does exactly what the

compiler would do in their absence, define them anyway.

Always define the destructor, even if the definition is empty or

would do exactly what the compiler would do in their absence.

Remember to make destructors virtual if the class is a part of a

hierarchy with anything virtual.

196

Only introduce overloaded operators if it is absolutely clear

what they mean.

Always make member functions const if they do not change the

logical state of the object.

If a member function changes internal member variables

irrelevant for the object’s logical state (e.g. for optimization),

make these variables mutable.

If a const member function accesses objects outside of the

class, these should not be changed (i.e. if they are owned by

the object).

197

Use a consistent naming scheme in addition to consistent

indentation etc.

• Identifiers constructed from several words could be

capitalisedLikeThis or written like this.

• Class names may (or may not) begin with a upper-case

letter.

• Member variables could have a leading or trailing

underscore to help the reader and avoid clashes with other

identifiers. (Note that a leading underscore should not be

followed by underscore or a capital letter.)

• There are many styles – the important thing is to be

consistent to reduce the potential for confusion.

198

Always start by making member variables private.

Only introduce friends or make members protected if it

improves data hiding, i.e. when the alternative is to making

things public. Never do it to simplify notation.

Never use inheritance to represent a has-a relationship. Instead

use a member variable, possibly a pointer.

199

Pass object arguments as copies or as references unless you

want to transfer the ownership of dynamically allocated

objects, in which case they should be passed as pointers.

But: if you use smart pointers you should pass pointers so that

the pointers work as expected – you don’t want to be stranded

with a reference to a deleted object.

When allocating objects with new, think hard about who is

supposed to delete them and make this very clear. Likewise if

allocating using legacy (read: C) libraries.

When you delete, set the pointer to 0 (C++11 nullptr).

When passing a pointer or a reference as an argument, make

them const if the function should not change the logical state

of the corresponding objects.

200

If you find that you need to use dynamic_cast, think through

your design again.

If you find that you need to use const_cast, think through your

design again.

201

Always inline simple accessor member functions.

Never inline functions which are more than one or two lines

long.

Optimize your code only if you know you have a performance

problem.

BUT: Don’t de-optimize your code for no reason. Passing a

const vector<int> & instead of a vector<int> is not an

optimization, it’s good practice and does not complicate the

code beyond adding a few characters.

202

Use the standard library, especially the containers and

algorithms.

Never use built-in arrays or character strings.

If possible, write a working program before trying to replace

std:: with something special purpose.

If the standard library is not enough, try GPL’ed packages first

before commercial ones. And only as a last resort roll your own.

203

Try to make your classes and functions general and reusable.

Separate the reusable from the problem-specific. (Example: In

many of my projects I reuse a small function for seeding a

random number generator from /dev/random)

Copying code within a project is generally bad. Refactor and

generalize instead.

Try to make each class (hierarchy) as independent as possible

from the rest of the classes in your project.

Last rule: All rules have exceptions.

204

Addendum: Case study, detector

simulation

Simulate particles propagating through a detector

A particle propagates through the detector until it interacts
with the material in the detector, decays or leaves the detector.

If a particle decays, propagate its decay products.

If a particle interacts and interaction products are produced,
propagate these.

If a particle interacts with an active part of the detector, a hit
is registered.

After all particles have been propagated, take all hits and
reconstruct the tracks of all particles.

205

Simulate particles propagating through a detector

class Particle;

class Detector;

Choose simulate(Particle &, Detector &); rather than

Particle::simulate(Detector &); or

Detector::simulate(Particle &);

Choose Detector::propagate(Particle &); rather than

Particle::propagate(Detector &); Or maybe propagate should

really have been propagator and we should have class

Propagator and Propagator::propagate(Particle &, Detector &);

through implies that the detector occupies space. We may

need a class Volume;

206

Detector would typically be an abstract base class. ”Silicon

Vertex Detector”, ”Electromagnetic Calorimeter” or ”Bubble

chamber” are Detectors, but there is no plain detector.

Particle could be polymorphic. class Lepton;, class Hadron;,

class Nucleus;, class Electron: public Lepton;

But maybe Particle is a concrete class which HasA set of

quantum numbers.

207

Particle decays

Particle::decay();? Or maybe class Decayer and

Decayer::decay(Particle &); or both?

A particle may have a pointer to a Decayer which knows how to

decay the particle (bool Decayer::canDecay(Particle &);).

208

Particle interacts with material in detector

class Material may be polymorphic. A Detector has/is Volume

and has/is Material.

Who knows how to do what? Particle::interact(Material &);

or Material::interact(Particle &); or

class Interactor; Interactor::interact(Particle &, Material &);

209

A particle leaves the detector

Again Detector occupies a Volume.

A particle interacts and interaction products are formed

Trivial: interactions products (just as decay products) are also

particles and should be propagated.

210

A particle interacts with an active part of the detector.

class DetectorPart: public Volume {
public:

virtual void interact(Particle &);

// ...

};

class ActiveDetectorPart: public DetectorPart {
public:

virtual void interact(Particle &);

// ...

};

class Detector {

// ...

SomeContainer<DetectorPart *> theParts;

};

211

class CompoundDetectorPart: public DetectorPart {
// ...
SomeContainer<DetectorPart *> theParts;

};

class AtomicDetectorPart: public DetectorPart, public Material {};

class Detector: public CompoundDetectorPart {};

212

A hit is registered

reconstruct tracks

class DetectorPart {
// ...
CompoundDetectorPart * parentPart;
// ...

public:
virtual void record(Hit * hit) {

parent->record(hit);
}
// ...

};

class Detector {
// ...
SomeContainer<Hit *> hits;
// ...

public:
virtual void record(Hit * hit) {

hits.insert(hit);
}
SomeOtherContainer<Track> reconstruct();
// ...

};

213

A particle leaves a track in the detector.

Does a Particle have a Track? Or maybe a Track IsA Particle?

But some particles will leave no track (e.g. neutrinos). A single

reconstructed track may correspond to two collinear particles or

no particle at all.

Particle knows nothing about Track. Track may be associated

with zero or more Particles.

class Track {
// ..
SomeContainer<const Particle *> associatedParticles;
// ..

};

214

