Exercises, Reaction dynamics

Exercise 1: Define the ordinary differential equations describing the time evolution of all molecules in the following reactions:

A. Production/degradation

$$
\emptyset \stackrel{k_{1}}{\stackrel{k_{2}}{\rightleftharpoons}} A .
$$

(Assume a mass action formalism).

B. Dimers

$$
A+B \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} C
$$

(Assume a mass action formalism).

C. Homodimers

$$
A+A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} C
$$

(Assume a mass action formalism).
D. Enzymatic transformation

$$
A \underset{V_{2}, K_{2}, E_{2}}{V_{1}, K_{1}, E_{1}} \underset{\stackrel{K}{K_{2}}}{ }
$$

(Assume a Michaelis-Menten formalism with the enzymes E_{1}, E_{2}).
E. Auto-activation Set up a model for a protein that activates its own transcription, and include a protein degradation term. (Assume a Michaelis-Menten formalism).
F. Auto-repression Set up a model for a protein that represses its own transcription, and include a protein degradation term. (Assume a Hill formalism).
G. AND gate Set up a model for a protein X that is activated if and only if both transcription factors Y and Z are present. (Assume a Michaelis-Menten formalism).

Exercise 2: Analyse the dynamics for two of the examples given in exercise 1.

Exercise 3: Describe in words or with reaction arrows plausible mechanisms leading to the following equations:
A.

$$
\begin{aligned}
\frac{d[X]}{d t} & =k_{1}-k_{2}[X]+k_{3}[Y]-V_{1} \frac{[X]\left[E_{1}\right]}{K_{1}+[X]} \\
\frac{d[Y]}{d t} & =-k_{3}[Y]+V_{1} \frac{[X]\left[E_{1}\right]}{K_{1}+[X]}
\end{aligned}
$$

B.

$$
\begin{aligned}
\frac{d[X]}{d t} & =k_{1}+\frac{k_{2}[Y]^{2}}{k_{3}+[Y]^{2}}-k_{4}[X]-V_{1} \frac{[X]\left[E_{1}\right]}{K_{1}+[X]} \\
\frac{d[Y]}{d t} & =-[Y]+V_{1} \frac{[X]\left[E_{1}\right]}{K_{1}+[X]}
\end{aligned}
$$

C.

$$
\begin{aligned}
\frac{d[X]}{d t} & =k_{1}+\frac{k_{2}[Y]^{2}}{k_{3}+[Y]^{2}}-k_{4}[X]-V_{1} \frac{[X]\left[E_{1}\right]}{K_{1}+[X]} \\
\frac{d[Y]}{d t} & =k_{5}-[Y]-\frac{k_{2}[Y]^{2}}{k_{3}+[Y]^{2}}
\end{aligned}
$$

D.

$$
\begin{aligned}
\frac{d[A]}{d t} & =a-(b+\beta)[A]+c[A]^{2}[B] \\
\frac{d[B]}{d t} & =b[A]-c[A]^{2}[B]
\end{aligned}
$$

