C++4 coding guidelines

Jari H&kkinen and Markus Ringnér

$Revision: 46 $
$Date: 2008-08-19 15:33:30 +0200 (Tue, 19 Aug 2008) $

Contents
1 Introduction

2 Guidelines for Names and Structuring

2.1 Names
2.2 Header File Structure
2.2.1 Class Declaration Structure
2.2.2 One Class Definition per Module
2.2.3 Comments in Header Files
2.3 Implementation file structure L.
2.3.1 Comments in the Implementation Module
2.4 Two Issues About Style
2.4.1 Brace placemento
2.4.2 Indentation
2.5 SUMMATY

3 Recommendations for Usage of Language Features

3.1 Namespaces
3.2 Inline functions and assert(3)
3.3 Constructors. L
3.3.1 One argument constructors
3.4 Destructors
3.4.1 Virtual Destructors
3.5 Operators
3.0.1 assignment Lo
3.6 Books

4 Preparing the Code for Revision Control

A Indentation in Selected Text Editors
Al Emacs
A2 Kate
A3 Vi

B Operator Precedence Order Summary

1 Introduction

Inspired by the guidelines in [1] our main idea with this document is that it should
facilitate the communications among developers in our team. Therefore, it will be focused
on how to name variables, functions, classes, etc. and how to structure files, modules,
classes, etc. However, communication is not all we're after with this document. Even
though good design can’t be legislated we do provide a set of recommendations for usage
of language features. With them we hope that our developers will be able to faster
understand each others code.

2 Guidelines for Names and Structuring

2.1 Names

Today all C++ compilers support namespaces, and so do we. We use theplu as our
major namespace, and use nested project namspaces within the theplu namespace. In
section 3.1 we explain our view on namespaces usage.

All names should be descriptive unless they are better left as a single letter or word.
Words in names should be separated by underscores, except for class names and enum
keywords. In class names and enum keywords the first letter in each word should be
capitalized and underscores should be avoided. Private member variables should end
with an underscore. Functions, variables and enum tags should preferably be all in lower-
case. Global variables should be prefixed with upper-case GLOBAL_ and static variables
(but not static member variables) with upper-case STATIC_.

class MyClass

{

public:
enum State { active, inactive };
double calculate_number(void) const;

private:
double value_;

+s

double MyClass::calculate_number(void) const

{
extern int GLOBAL_factor;
return value_*GLOBAL_factor;

b

2.2 Header File Structure

The complete body of header files should be protected against multiple-inclusion, as fol-
lows:

#ifndef symbol

#define symbol

<the complete body of the header file>
#endif

Note, no lines of code or comments should be outside the #ifndef ... #endif construct.
This allows compilers to optimize the reading of header files.

The symbol used in the conditional compilation statement should be made up from
the project name and module name. If the module name is MyClass.h and the module
is in project myproject then the symbol name should be _theplu myproject myclass._.
The idea of this symbol is that it should be unique in the environment where it is used.

The multiple-inclusion protection should be followed by #include statements that
describe which interfaces the module depends on. Typically a module depends only on
the interfaces of base classes, classes that are contained by value or classes whose member
functions are called within inline functions.

Next comes the forward declarations of the classes that the module uses and contains.
Forward declarations should always be preferred to #include statements, which only
should be used when necessary. This will minimize code dependencies, and make the
programmer more conscious about what is used and what is not used in their code.

The #include statements and forward declarations should both be structured in blocks
(separated by empty lines). Each block should contain modules of similar origin and each
block should be sorted alphabetically. If needed, a block should begin with a comment
explaining it.

All header files must include config.h first (if it’s needed), followed by the primary
header. So for example, File.cc should include its primary header File.h first (config.h
omitted here), before other header files. This guarantees that the completeness of each
header file is tested during compilation. After the primary header follows inclusion of
header files located in the same directory followed by header files belonging to the same
project but located in other directories. Then 3rd party project header files are included
and last standard header files are included.

#include "config.h"
#include "File.h"

// Classes from this project
#include "OtherClass.h"

#include "path/to/other/dir/in/project/SomeClass.h"

// Classes from project X
#include <MyOtherProjectClass.h>

#include <iostream>
#include <vector>

Next comes the class specifications, followed by additional operators such as operator<<
and finally comes the implementation of inline member functions if these are not defined
already in the class declaration. We do not support the idea of collecting all inline func-
tions in a separate file since this will only give another file to keep track of.

2.2.1 Class Declaration Structure

All public declarations come first, then all protected declarations followed by all friend
declarations and finally all private declarations. The indentation and spacing should be
consistent and readable. Generally, we prefer not to indent public:, protected: and
private:, while we indent all the declarations.

class MyClass
{
public:
double public_function(void);

protected:
int protected_function(void);

private:
string name_;

}s

The member functions should in each section start off with the constructors, followed by
the destructors, then follows the member functions in alphabetical order, and finally the
operators are declared in the order defined in Appendix B.

2.2.2 One Class Definition per Module

We generally keep the rule of having one class definition per module. Each class definition
is in its own header file. Sometimes, if classes are tightly coupled, we make an exception.

2.2.3 Comments in Header Files

We generate our documentation from our C++ files using Doxygen (see [2]). This reduces
the visibility of the structure. We think this is outweighed by not having to duplicate the
protoypes of functions in a separate documentation. Before each declaration or definition
we want to document we place the following?:

/%%

Some text documenting the class MyClass
*/
class MyClass

!By default, Doxygen associates a documentation block with the next declaration or definition. This
means that one can have empty lines after the documentation block to enhance the visibility of the
structure.

Try to keep comment line lengths within the terminal character limit, i.e less than 80
characters per line. This will make the comments more readable.

2.3 Implementation file structure

We generally keep the rule of placing all the non-inline definitions of the member functions
for a class in one module, and that module will not contain definitions of member functions
for any other class. Sometimes, if we have made an exception in a header file, we make
the same exception in the corresponding implementation file and include the definitions
of member functions from several classes in one module.

We begin the implementation file with the necessary #include statements and we
structure them in the same way as in the header files (see Section 2.2) with the exception
that the class’s own header file must be included first.

Next comes the definition of member functions and they are ordered in the same way
as a section in the class declaration. At the end we have the definitions of additional
operators such as operator<<.

2.3.1 Comments in the Implementation Module

Most member functions are fully explained by the names and the comments in the header
file. If tricky algorithms, that must be explained, are used in a function then we preface
its definition with a comment describing the algorithm. Within the code we try to limit
our comments to one line. Doxygen supports documentation in several places, but we
prefer to only put comments extracted by Doxygen in the header files (cf. [2]).

2.4 Two Issues About Style

Two issues that always come up when programmers with different backgrounds get to-
gether are the placement of braces and indentation. In this section we give you our
position on these two eternal questions.

2.4.1 Brace placement

We prefer to put the begin brace on the same line as the controlling statement, while
we keep the end brace on its own line and at the same indent level as the controlling
statement. There are two exceptions to this rule as outlined below.

In general we use the

if (mycondition) {
// statements inside the if

everywhere where braces are used. The exceptions are brace usage in function definitions

MyClass: :public_function(void)
{

// function body
+

and in inline declarations we prefer a more compact style

class MyClass

{

public:
inline double return_zero(void) { return 0; }
inline double another_public_function_with_a_long_name(void)
{ return some_function_returning_double(); }

}

where the second style is used when the line has to be split for readability. If declara-
tion and definition for inline functions are separated then the function definition style is
preferred.

2.4.2 Indentation

The question of indentation is really not an issue, every indentation level should strictly
be a tab character. The problem is to get your favourite text editor to show and treat
indentation properly (see Appendix A for information on how to configure a few common
editors).

2.5 Summary

So far we have been concerned with guidelines that facilitate the communications among
our developers. The important thing with these guidelines is not the guidelines themselves
but to stick to a chosen set of guidelines.

3 Recommendations for Usage of Language Features

In this section we leave the guidelines for facilitating communication. Instead we will
focus on practices of a particular programming style. This programming style is based on
Jaris and Markus collective experience. We believe that adhering to this programming
style has a positive aspect on the quality of our code. This is not intendend to be a
legislation of any kind, and we do not want it to limit our developers. We present this
in hope that it will inspire others or at least start discussions. Minimally, it will at least
make it easier to understand our code.

3.1 Namespaces

We use namespaces, and avoid importing all symbols from namespaces we use in our
programs. Thus, the use of a file wide using namespace std; is deprecated and strictly
forbidden in header files. Putting the statement using namespace std; into a header
file will pollute the namespace for everyone using the header file.

In the rare occasions you must import all symbols from a namespace do it within a
local scope as in

int main(const int argc,const char* argv[])

{
using namespace::std; // import all std symbols!
cout << "This operator usage works fine here\n";

b

since this will only polute the main scope. Explicit import of classes is preferred, e.g. use
using theplu::my project::MyClass; to import MyClass. Similarily, if you are only
using cout, use the explicit import using std::cout; instead of importing the entire
std namespace.

When we create our own namespaces we do it in a nested fashion. All packages
developed in-house should be in theplu (lower case characters) namespace, and a specific
package is then defined within the theplu namespace,

namespace theplu {
namepace my_project {

class MyClass
{
¥

}} // of namepace my_project and namespace theplu

3.2 Inline functions and assert(3)

Inline functions should be used sparingly and only for one line statements. In principle
inlining should only be used when a performance increase can be proved.

The assert macro must never be used in header files (i.e., in inline functions) to avoid
different debug level in header files and production program libraries, and to avoid changes
in library behaviour with -NDEBUG usage.

3.3 Constructors

We prefer all our classes to have a copy constructor and we like their implementation to use
the assignment operator. This is beacuse eventually one will almost always want to copy
an object and then it should be done properly. If no copy constructor is implemented we
recommend to declare it private, this will create a compiler diagnostic if the constructor
is implicitly used.

Implementing the copy constructor in terms of the assignment operator removes dupli-
cation of code. Remember that sometimes data members of the object to be constructed
has to be properly initialized before the call to the assignment operator.

3.3.1 One argument constructors

One argument constructors can be used in implicit conversions, which can lead to unex-
pected behaviour. Therefore, we declare our one argument constructors explicit, if we
do not specifically want them to work in implicit conversions.

3.4 Destructors
3.4.1 Virtual Destructors

We always make our destructors virtual, unless we are certain that no class will ever be
derived from them. This is due to that if one tries to delete a derived class through a
base class pointer and the base class lacks a virtual destructor the results are undefined.

3.5 Operators
3.5.1 assignment

We prefer all our classes to have an assignment operator. Assignment operators should
return a reference to this, check (avoid) for assignment to self, and make sure that all
data members are properly assigned. Also, remember to free allocated resources correctly
in assignment operators. If no assignment operator is implemented declare it private in
order to avoid implicit usage.

3.6 Books
Many of our ideas about C++ are based on the following books:

e Design Patterns [3]

o Effective C++ [4]

e More Effective C++ [5]
e Effective STL [6]

Use these books as references. Each book contains a list of the items/patterns they
contain. Familiarize yourself with these lists and look at them every time you think about
the design of something. Most likely they describe the problem you are considering.

4 Preparing the Code for Revision Control

We use Subversion for revision control (see [7]). Subversion can be set up to substitute

keywords in the source files with information to identify the version, author, date, etc. of

the file. We use some of these keywords in our code. The advantage with this is that files

can be identified even if they are exported from the development environment.
Minimally all implementation modules should begin with a comment line

// $1d$

that is expanded by a properly set up Subversion environment to
// $Id: c++_coding_guidelines.tex 46 2008-08-19 13:33:30Z jari $

whereas for header files the comment line should be placed after the #ifndef/#define
construct as

#ifndef symbol

#define symbol

// $Id: c++_coding_guidelines.tex 46 2008-08-19 13:33:30Z jari $
<the complete body of the header file>

#endif

References

[1] Robert C. Martin, Designing Object Oriented C++ Applications Using the Booch
Method, Prentice Hall, 1995

2] Jari Hakkinen, The C/C++ documentation guidelines®

[3] E. Gamma et. al., Design Patterns, Addison Wesley Professional, 1995
[4] Scott Meyers, Effective C++, 3rd ed., Addison-Wesley Professional, 2005
[5] Scott Meyers, More Effective C++, Addison Wesley, 1996

[6] Scott Meyers, Effective STL, Addison-Wesley Professional, 2001

[7] Jari Hikkinen, Subversion guidelines?

A Indentation in Selected Text Editors

Note, every indentation level must be one tab each.

A.1 Emacs

For emacs I want 2 space indentation, and this is accomplished in the below excerpt from
my .emacs file. Every indentation level will generate a tab character in the file, but
displayed as 2 space characters. If you want to change indentation to something else than
2, you must change both 2 characters below.

(defun my-c-mode-hook ()
(setq c-basic-offset 2)
(setg-default tab-width 2)
(setq-default indent-tabs-mode t))
(add-hook ’c-mode-hook ’my-c-mode-hook)
(add-hook ’c++-mode-hook ’my-c-mode-hook)

Zhttp://www.thep.lu.se/ jari/documents/
3http://www.thep.lu.se/ jari/documents/

A.2 Kate

In kate you set the indentation setting through the graphical user interface. Do the
following

1. Choose menu Settings — Configure Kate.
2. In the tree, choose Editor — Editing.

3. Set your preferred value in Tab and indent width.

A3 Vi

To get proper display of tab in vi (and clones?) you need to add one line in .vimrc:

set tabstop=2
set sw=2
set ai

where you change the 2s to fit your preference. set ai turns auto indentation on.

B Operator Precedence Order Summary

Name Associativity Operators

Scope resolution l—>r e

Primary l—r () [0 . -> dynamic_cast typeid
Unary r—1 ++ -— + - | 7 & x (typename) sizeof new delete
Member selection l—r kD%

Multiplicative l—r x /%

Additive l—>r + -

Bitwise shift l—r << >>

Relational l—>r < > <= >=

Equality l—r == I=

Bitwise AND l—r &

Bitwise XOR l—r -

Bitwise OR l—r |

Logical AND l—>r &&

Logical OR l—r |l

Conditional r—1 ?

Assignment r—1 = 4= —= k= [= <<= >>= Y= &= "= |=
Throw exception l—r throw

Comma l—>r ,

