“The core mission of a version control system is to
enable collaborative editing and sharing of data.”

Subversion guidelines

Jari Hakkinen

$Revision: 55 $
$Date: 2021-08-27 15:43:22 +0200 (Fri, 27 Aug 2021) $

Contents
1 Introduction 3
1.1 Branching patternso L 4
1.1.1 Release branches, 4
1.1.2 Feature branches)
1.1.3 Vendor branches 0. 5
1.1.4 Subversion 6
1.2 Donate Your Changes. 6
2 Subversion usage rules 6
2.1.1 All checks should work after a commit 7
2.1.2 Do not check in personal debug code into the main trunk 7
2.1.3 Commit often and do it minimalistic 7
2.1.4 Write a log message when committing 7
2.1.5 Set up proper subversion config file 8
2.1.6 Use the Id keyword to identify files 8
2.1.7 Read and understand this document 8
2.1.8 Project directory structure 8
2.1.9 Do not mess with the tags directory 9
A Common operations 9
A.1 Setting up a repository 9
A.2 Handing over control to subversion L. 9
A.3 [Initial checkout of a project L 10
A.4 Set up of editor to use for log messages L. 10
A5 Undoing changes 10

A.6 Undoing svn add (and svn delete) 10

A.7 Resurrecting deleted items 10
A.8 How do I make subversion ignore items when issuing svn status 11
A9 Can I add a symbolic link to subversion control 11
A.10 Creating a branch 11
A.11 Porting changes between branches 11
A.12 Merging a stable branch into the main trunk 12
A.13 Keeping a feature branch in sync L. 12
A.14 Merging a feature branch into the main trunk 13
A.15 Removing a branch oo 13
Al16 Creating atag I 13
A7 Creating a tag IT 14
A.18 How to list the set of tags in a project 14
A.19 Help, my favourite repository has moved 14
A.20 Change trac ticket status through commit log messages 15
Subversion related commands 15
svn sub-commands 16
Item properties 18
Repository side stuff 19
E.1 Setting up a repositoryo 19

E.1.1 Repository access o 19
E.2 Administrator enforced repository layout 20
E.3 Adding a post-commit hook to a repository 20
Configuration options 21

This document aims at giving developers a very short introduction to version control
systems in general, and subversion in particular. Most of the material is collected from the
book “Version Control with Subversion.”! To be honest, many sentences and paragraphs
in this documents are outright stolen from the subversion book.

For a more detailed introduction to revision control systems and its concepts, refer to the
subversion book.

1 Introduction

All version control systems have to solve the same fundamental problem: how will the
system allow users to share information, but prevent them from accidentally stepping on
each other’s feet? It’s all too easy for users to accidentally overwrite each other’s changes
in the repository.

Version control systems usually manage to keep track of changes and merge them to-
gether appropriately. However, there are cases when users do overlapping changes and
the system cannot resolve the contradictory changes. This situation is called a conflict,
and it’s usually not much of a problem. When a user asks his client to merge the latest
repository? changes into his working copy?®, his copy of file with conflicting changes are
somehow flagged as being in a state of conflict: he’ll be able to see both sets of conflict-
ing changes, and manually choose between them. Note that software can’t automatically
resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once the overlapping changes are (manually) resolved — perhaps after
a discussion with the party who made the conflicting changes — the merged file can safely
be committed into the repository.

One way to avoid conflicting changes in files is to introduce locking of the repository while
someone updates files*. This will prohibit concurrent changes of files, and keep conflicts
to a minimum, but at the same time it becomes a nuisance since only one person in the
team can make changes at the time. Of course, others can also work on the project and
wait until they get to lock the repository for their commits, but after that they checked
(sometimes without the support of a version control system) that their changes does not
contradict other changes made before they got the locking power.

In the end, it all comes down to one critical factor: communication. When users commu-
nicate poorly, both syntactic and semantic conflicts increase. No system can force users to
communicate perfectly, and no system can detect semantic conflicts. So there’s no point
in being lulled into a false promise that a locking system will somehow prevent conflicts.

Thttp://svnbook.red-bean.com/

2The repository is a database containing all files and directories handed over to subversion control.
The repository also stores information about changes, log messages, who did what and when, and so
on. The user of subversion will never tamper with the repository directly, but rather use a client for all
actions he wishes to perform to subversion controlled files.

3The working copy is whatever was checked out from the repository. Different users have their own
working copies, and users may even have several different working copies of a repository.

4This is how RCS works, or sharing of binary file formats as Microsoft Word

1.1 Branching patterns

For projects that have a large number of contributors, it’s common for most people to
have working copies of the trunk®. Whenever someone needs to make a long-running
change that is likely to disrupt the trunk, a standard procedure is to create a private
branch and commit changes there until all the work is complete.

Of course, if you need to go back and fix bugs in previous releases of your software, you
will need to checkout the revision used for that release, and make necessary changes and
store the changes as a branch in the subversion tree.

1.1.1 Release branches

Most software has a typical life cycle: code, test, release, repeat. There are two problems
with this process. First, developers need to keep writing new features while quality-
assurance teams take time to test supposedly-stable versions of the software. Continued
work cannot halt while the software is tested. Second, the team almost always needs to
support older, released versions of software; if a bug is discovered in the latest code, it
most likely exists in released versions as well, and customers will want to get that bug-fix
without having to wait for a major new release.

Branching using subversion as suggested by the subversion book:

Developers commit all new work to the trunk. Day-to-day changes are committed to
/trunk: new features, bug-fixes, and so on.

The trunk is copied to a “release” branch. When the team thinks the software is getting
ready for release, then /trunk might be copied to /branches/1.0-stable.

Teams continue to work in parallel. One team begins rigorous testing of the release
branch, while another team continues new work on /trunk. If bugs are discovered
in either location, fixes are ported back and forth as necessary. At some point,
however, even that process stops. The branch is “frozen” for final testing right
before a release.

The branch is tagged and released. When testing is complete, /branches/1.0-stable
is copied to /tags/1.0 as a reference snapshot. The tag is packaged and released
to customers.

The branch is maintained over time. While work continues on /trunk for next version,
bug-fixes continue to be ported from /trunk to /branches/1.0-stable (or the
other way around). When enough bug-fixes have accumulated, management may
decide to do a 1.0.1 release: /branches/1.0-stable is copied to /tags/1.0.1, and
the tag is packaged and released.

5The trunk is the main development line in the repository, in contrast to branches that exist in parallel
to the main development line.

1.1.2 Feature branches

We insist on that /trunk and release branches compile and pass regression tests at all
times. A feature branch is only required when changes require large numbers of destabil-
ising commits. A good rule of thumb is to ask this question: if the developer worked for
days in isolation and then committed the large change all at once (so that /trunk were
never destabilised), would it be too large a change to review? If the answer to that ques-
tion is “yes”, then the change should be developed on a feature branch. As the developer
commits incremental changes to the branch, they can be easily reviewed by peers.

To avoid branches to grow to far apart from each others, the feature branches must be kept
in sync with the trunk. We require that branch synchronisation is performed regularly
(once every week) against the trunk. Remember to write proper log messages to keep
track of merges.

When the development branch is kept in sync with the trunk it is straight forward to port
the branch back to the trunk since all differences between the branch and the trunk are
readily made in the branch. Basically, all that needs to be done is to merge by comparing
the branch with the trunk.

1.1.3 Vendor branches

If a project depends on someone else’s information, there are several ways to attempt to
synchronise that information with the project. Most painfully, one could issue oral or
written instructions to all the contributors of the project, telling them to make sure that
they have the specific versions of that third-party information that the project needs. If
the third-party information is maintained in a subversion repository, one could use subver-
sion’s externals definitions to effectively “pin down” specific versions of that information
to some location in your own working copy directory (see the section called “Externals
Definitions” in the subversion book).

The solution to this problem is to use vendor branches. A vendor branch is a directory
tree in the version control system that contains information provided by a third-party
entity, or vendor. Each version of the vendor’s data that is decided to be absorbed into
the project is called a vendor drop.

Vendor branches provide two key benefits. First, by storing the currently supported
vendor drop in the version control system, the members of the project never need to
question whether they have the right version of the vendor’s data. They simply receive
that correct version as part of their regular working copy updates. Secondly, because the
data lives in the subversion repository, we can store your custom changes to it in-place
— there is no more need of an automated (or worse, manual) method for swapping in
customisations.

Managing vendor branches generally works like this. Create a top-level directory (such
as /vendor) to hold the vendor branches. Then the third party code is imported into
a sub-directory of that top-level directory. This sub-directory is copied into the main
development branch (for example, /trunk) at the appropriate location. Local changes

are always made in the main development branch. With each new release of the code
we are tracking we bring it into the vendor branch and merge the changes into /trunk,
resolving whatever conflicts occur between local changes and the upstream changes.

1.1.4 Subversion

Each time the repository accepts a commit, this creates a new state of the file system tree,
called a revision. Each revision is assigned a unique natural number, one greater than
the number of the previous revision®. The initial revision of a freshly created repository
is numbered zero, and consists of nothing but an empty root directory.

It’s important to note that working copies do not always correspond to any single revision
in the repository; they may contain files from several different revisions. This happens if
you commit a changed file, this file will get a new revision number while the rest stays
at their current revision. The revision discrepancy will also happen if you svn update
specific items in your working copy. To bring everything on par with the latest repository
revision you must do an svn update in working copy root directory level.

Once you’ve finished making changes, you need to commit them to the repository, but
before you do so, it’s usually a good idea to take a look at exactly what you’ve changed. By
examining your changes before you commit, you can make a more accurate log message.
You may also discover that you've inadvertently changed a file, and this gives you a chance
to revert those changes before committing. Additionally, this is a good opportunity to
review and scrutinise changes before publishing them.

1.2 Donate Your Changes

"After making your modifications to the source code, compose a clear and concise log
message to describe those changes and the reasons for them. Then, send an email to
the developers list containing your log message and the output of svn diff (from the
top of your subversion working copy). If the community members consider your changes
acceptable, someone who has commit privileges (permission to make new revisions in the
subversion source repository) will add your changes to the public source code tree. Recall
that permission to directly commit changes to the repository is granted on merit — if
you demonstrate comprehension of subversion, programming competency, and a “team
spirit”, you will likely be awarded that permission.

2 Subversion usage rules

There are not many requirements put on us developers with respect to subversion usage,
so we should actually be able to follow them. If you feel that any of these rules are stupid

6In contrast, CVS have revision numbers on every file under control.
"This subsection is written for developers without write access to the repository.

and as such should be changed, feel free do discuss them at our group meetings. However,
until we agree on changing rules, we must obey them.

2.1.1 All checks should work after a commit

Before you make a commit to the trunk, you must make sure that all scripts, compilations,
regression tests, documentation generations, or whatever needed in the project works as
expected. There is nothing more frustrating than running into someone else’s problems
when you are about to solve that memory leak you have been looking for since 2pm
yesterday. One way to make sure that your last commit did not break things is to actually
have another pristine checkout of the project. This pristine working copy should only be
updated against the repository for testing after your latest commit. If all checks run okay
in this pristine tree you probably did a proper commit from your development working

copy.

If you feel that you cannot fulfil this requirement there are two options. i) Create a
private branch, fix whatever you are doing, and merge the changes into the main trunk
when everything works again. ii) Ask the rest of the development team’s permission to
leave this rule for a very short time.

2.1.2 Do not check in personal debug code into the main trunk

If you must check in personal debug code, create your own branch and keep this branch
and the main trunk in sync (see Appendix 1.1 on how to do this).

2.1.3 Commit often and do it minimalistic

Make sure that you stay up to date with the repository, i.e., commit often and remember
to issue svn update.

When you decide to make a commit, make it small and to the point. By this we mean
that commits should only contain whatever was needed to solve a problem or to add a
feature. There is no use in committing trivial unnecessary changes into the repository
such as stray blank lines or extra white space characters in the end of a line (CR — CRLF
conversions are especially annoying and can be avoided by proper setup of your subversion
environment).

2.1.4 Write a log message when committing

Log messages are useful for other developers when they want to know what was done in a
commit. You may think that trivial changes can easily be “diffed” and thus need no log
message. However, diffs requires more work than reading log messages, and remember,
log messages for trivial changes are easy to write.

For projects that use trac® for software project management there is a possibility to close
or add comments to trac tickets directly when committing changes to the repository. This
is done by writing a properly formatted log message, cf. A.20.

2.1.5 Set up proper subversion config file

Cut and paste the configuration setup from Appendix F into your subversion configuration
file $(HOME) / . subversion/config

2.1.6 Use the Id keyword to identify files

For all text files we modify and maintain, we must add Id near the top of the file for easy
identification of the file and its latest revision change. If you set up a proper subversion
configuration file this requirement becomes trivial. The only thing needed then is to add
Id into source files.

2.1.7 Read and understand this document

This should not need to be a rule, but ... There are a few concepts which you may have
neglected previously such as branches.

Read the branches section in the introduction and make sure you understand it. If you
get confused, ask someone. Note that our release and branching procedure is defined in
the branching section.

2.1.8 Project directory structure

In order to make future branching of projects under subversion control seamless, one must
plan ahead when creating the project repository. In subversion this means that a proper
project directory structure must be set up at the initial import of a project into subversion
control.

The directory structure adopted for the project must always contain these three directories
at root level

/trunk
/branches
/tags

The trunk directory holds the “main line” of development, the branches directory contain
branch copies, and the tags directory contain tag copies.

This structure is needed for the branching procedure we are adopting (cf. Appendix 1.1),
and the recommended structure in the subversion book.

8http://projects.edgewall.com /trac/

2.1.9 Do not mess with the tags directory

Never make commits in the tag directory, it exists only for keeping track of tags®.

A Common operations

In true Perl spirit there are more than one way to perform the below tasks. It is also
assumed that the subversion repository is residing on a server (here, svn.example. com is
running a web server with svn support), and calc is used as the example project. Further-
more, since we are anticipating branching of the project, we must prepare our repository
for branching. Command examples are typed as

command --with-option example

and

A.1 Setting up a repository

Setting up a new personal repository is straight forward, do
svnadmin create /path/to/svn/repos/project

and subversion is now ready accept addition of projects into the repository. If the repos-
itory resides on a server, then you need access to server and do some more initialisation
steps (see Appendix E.1).

A.2 Handing over control to subversion

If the repository is empty (still at revision 0), you start by creating the initial directory
structure to be imported into the repository, and (optionally) add files to be imported.

mkdir /tmp/myproject/branches
mkdir /tmp/myproject/tags
mkdir /tmp/myproject/trunk

cp ...
Import the project with

svn import /tmp/myproject http://svn.example.com/calc -m "Initial import"

Subversion does not store the root name /tmp/myproject, so these are only temporary
names.

9A tag is a marked point in the evolution of the project, an alias for a specific revision of the repository.
For humans, it is easier to remember a tag such as release-1.0 than revision number like 1255. Moreover,
a conscious choice of tag name makes it easy to remember why revision 1255 was interesting.

A.3 Initial checkout of a project

Assuming we want to checkout the main trunk of the project a simple
svn checkout http://svn.example.com/calc/trunk calc

will do. This will create a sub-directory calc containing the latest revision of the project.

A.4 Set up of editor to use for log messages

There two ways to set your favourite text editor for log message editing. Either you define
it in the config file, or set one of the environment variables SVN_EDITOR, VISUAL,
or EDITOR to point at your preferred editor. svn will use the first one it finds in the
order we described the different possibilities here.

A.5 TUndoing changes

If we realize that a change committed to the repository is unwanted we can reverse these
by reversing the order of revisions;

svn merge -r 303:302 http://svn.example.com/calc/trunk
Check the changes, and commit if you are happy with them. Magic!

A.6 Undoing svn add (and svn delete)

Sometimes we forget that adding items to subversion control is a recursive action, and as
consequence end up with a huge import of files. The easiest way out of this is to use the
revert sub-command

svn revert item

where item is whatever you added (or item can be empty, and everything in the current
directory will be reverted). Note, this will actually revert all uncommitted changes not
just whatever you added.

A.7 Resurrecting deleted items

For this the best solution is to use svn copy as
svn copy -r 807 http://svn.example.com/calc/trunk/real.c ./real.c

The added bonus with this is that subversion will also remember the file history.

10

A.8 How do I make subversion ignore items when issuing svn
status

You can also set what files svn should ignore when running svn status in the config file
(see Appendix F).

A.9 Can I add a symbolic link to subversion control

Yes, subversion handles symbolic links (in operating systems where these make sense)
automatically, just treat them as any other item.

A.10 Creating a branch

The simplest way to create a branch is to make a copy of the current trunk HEAD (or
another revision in the tree) by issuing

svn copy http://svn.example.com/calc/trunk \
http://svn.example.com/calc/branches/my-calc-branch \
-m "Creating a private branch of /calc/trunk."

This will create a shallow copy, meaning that subversion creates links within the repository
until files are actually changed. In consequence branches are inexpensive, and you should
not be afraid to create branches. You have to check out the new branch to get access
to it. The changes needed to the above command when creating a branch from a tag is
straightforward.

You can also create branches within your checked out project (see more in the svn book).
There are no real branching in subversion, there are different directories with files that
share a common history. Branches is an attribute that the users of subversion attach to
the branches directory.

A.11 Porting changes between branches

Sometimes you want to copy changes between branches and this is is accomplished by
merging different revisions. Issuing

svn merge -r 343:344 http://svn.example.com/calc/trunk

will perform a local update of your branch using the difference between the revision
specified. You should review the changes before committing them into your repository
branch. If something went wrong or is unsatisfactory, use svn revert. However, revert
may not be able to perform well in some cases.

11

A.12 DMerging a stable branch into the main trunk

Assuming we have a branch that only contains change sets from the branch itself, i.e., no
change sets have been ported from trunk to the branch. Now we want all changes made
to the development branch to be ported into the main trunk. To accomplish this we need
an up to date working copy of the main trunk. The procedure is

cd calc/trunk
svn update

svn merge http://svn.example.com/calc/branches/my-calc-branch

svn commit -m "Merged my-calc-branch changes into the trunk."

where some output has been removed. Note that only changes committed into the repos-
itory are available for porting. At a later point when more development has occurred in
the stable branch, we want to port these changes as well. This is equally easy since the
repository remembers which change sets have already been merged into the main trunk,
and the the procedure is simply

cd calc/trunk
svn update

svn merge http://svn.example.com/calc/branches/my-calc-branch

svn commit -m "Merged my-calc-branch changes into the trunk."

A.13 Keeping a feature branch in sync

Having a feature branch, it is recommended to keep it in sync with the trunk, i.e., port
changes in trunk into the feature branch.

cd branch-working-copy
svn merge http://svn.example.com/calc/trunk

The repository knows when the branch was created from the trunk and will only merge
change sets added to the trunk after the branch was created. After some time there has
been some significant development in trunk and you want to port these to the feature
branch. This is as easy as before

cd branch-working-copy
svn merge http://svn.example.com/calc/trunk

12

and you do not need to worry that changes will be ported twice. The repository remember
which change sets have already been merged to the branch and will not merge these again.

A.14 Merging a feature branch into the main trunk

Assuming that you followed the convention of keeping your feature branch in sync with
the trunk, all that is needed is

cd trunk-working-copy
svn update

svn merge --reintegrate http://svn.example.com/calc/branches/my-branch

Please note the use of the reintegrate option, which is critical. It tells subversion that
your feature branch is a mixture of trunk change sets and branch change sets. With the
reintegrate you have asked subversion to carefully find the branch change sets and only
port these.

Now when your feature branch has been merged into trunk it is recommended to remove
the branch because the branch is no longer usable for further work. It would not be
capable of correctly pick up change sets from the trunk via an svn merge, nor can it be
properly reintegrated into trunk again. If you need to work further on the feature branch
it is better to destroy it and create a new branch.

If you have been a bad boy and as such, out of sync. You must start by porting all changes
made to the trunk into your branch and then you are ready to perform the merge into
the trunk.

A.15 Removing a branch

When a branch has become obsolete this can be removed with

svn delete http://svn.example.com/calc/branches/my-calc-branch \
-m "Removing obsolete branch of calc project."

A deleted branch can be resurrected if needed.

A.16 Creating a tag 1

If we want to create a snapshot of the trunk exactly as it looks like in the HEAD revision,
just make a copy of it

svn copy http://svn.example.com/calc/trunk \
http://svn.example.com/calc/tags/release-1.0 \
-m "Tagging the 1.0 release of the ’calc’ project."

assuming you followed the guidelines and created a tags directory in you initial import.

13

Use -rif you prefer to specify a revision to tag.

Remember rule 2.1.9; Do not mess with the tags directory. If you need to change a tagged
revision of the project, you need to make a branch using the tags structure as template
for the branch (see item A.10).

A.17 Creating a tag 11

You can create a tag with your current working copy status

1s

svn copy my-working-copy http://svn.example.com/calc/tags/mytag

Why is this here? There is one (at least) interesting use for this feature. Sometimes
there are situations where you have a bunch of local changes made to your working copy,
and you’d like a collaborator to see them. Instead of running svn diff and sending a
patch file (which won’t capture tree changes), you can instead use svn copy to “upload”
your working copy to a private area of the repository. Your collaborator can then either
checkout a verbatim copy of your working copy, or use svn merge to receive your exact
changes.

A.18 How to list the set of tags in a project

This is straightforward use of the svn 1ist command
svn list http://svn.example.com/calc/tags

Remember rule 2.1.9; Do not mess with the tags directory. If you need to change a tagged
revision of the project, you need to make a branch using the tags structure as template
for the branch (see item A.10).

A.19 Help, my favourite repository has moved

Sometimes the location of a repository changes, but the contents of the repository stays
the same, i.e., the URL to the repository is changed. A repository move is easily fixed
with the svn switch command, this will change the URLs in your working copy. No
file contents are changed, and your work is untouched and can be committed to the new
location after switching to the new URL. This is subversion magic. Here is an example
where a repository moved from svn.example.com to new.host.org:

svn switch --relocate http://svn.example.com/calc \
svn://new.host.org/repos/calc .

We changed server type and directory path in this example. The Subversion Book warns
about spelling errors when changing the URL since it may cause havoc for you, so be
careful out there.

14

A.20 Change trac ticket status through commit log messages

There may be post-commit hooks in the subversion repository that performs specific
tasks when changes are committed to the repository. One of these utility programs per-
forms status changes to trac'® tickets if the log message is properly formatted. The
trac-post-commit-hook searches commit messages for text in the form of:

command #1
command #1, #2
command #1 & #2
command #1 and #2

where command is one of

closes, fixes
The specified issue numbers are closed with the contents of this
commit message being added to it.

references, refs, addresses, re
The specified issue numbers are left in their current status, but
the contents of this commit message are added to their notes.

closes and fixes are synonyms, and references, refs, addresses, and re are all
synonyms. More than one command can be issued in a message. An example message
is “Fixes #10 and #12, and refs #13. Changed blah and foo to do this or that.” This
message will close tickets 10 and 12, and add a note to ticket 13.

Note, it is important that #number is used, i.e., ticket:number will not work.

Information on where to retrieve and install the trac-post-commit-hook is available in
Appendix E.3.

B Subversion related commands

The subversion family of command all have built in help functionality. Issue command
help to get general information about the command, and a command help <subcommand>
will print information on the sub-command.

There are a number of commands associated with subversion
svn - Subversion command line client tool
svnadmin - Subversion repository administration tool
svndumpfilter - Filter a subversion repository 'dumpfile’

svnlook - Subversion repository examination tool

Ohttp:/ /projects.edgewall.com /trac/

15

svnserve - Server for the ’svn’ repository access method

svnversion - Produce a compact version number for a working copy

C svn sub-commands

Full information on svn and its sub-commands can be read in Chapter 9 of the subver-
sion book. Subversion prints nice help information if you issue svn help or svn help
subcommand at the prompt.

There are many different switches for the sub-commands, some of them are quite general
such as these

-r number where number is a revision number or revision keyword (HEAD, BASE, COM-
MITTED, or PREV). To compare version within the repository itself use -r num-
ber:anothernumber. A specific date, or a range, can be used. Put the date inside
curly braces (many formats are supported whereof we show one below). You can
even refer to date specified revisions mixed with numbered revisions.

HEAD The latest revision in the repository.
BASE The “pristine” revision of an item in a working copy.

COMMITTED The last revision in which an item changed before (or at) BASE.

PREYV The revision just before the last revision in which an item changed. (Tech-
nically, COMMITTED-1.)

DATE example: svn log -r 2005-01-27:2005-02-21
-v will give more information in many svn sub-commands.

-N Run non-recursively.

Not all svn sub-commands are needed in normal use. Here we list them in some sort of
groups.

checkout You can check out any sub-directory you want but are recommended to check
out the root level directory. Following the recommendation of the svn book the
main trunk is in the repository trunk directory. So, you should do

svn checkout http://base.thep.lu.se/svn/trunk base
The last base tells svn to checkout the main trunk into a sub-directory base. If you

omit base, svn will place the checked out files into sub-directory trunk.

update Update (synchronise) your working copy. If a conflict occurs, svn creates tempo-
rary files containing different revisions of the conflicting item. You need to resolve
the conflict, and use svn resolved to tell subversion that you resolved the conflict.

16

add Schedule files, directories, or symbolic links to be added to the repository. This
command is recursive, use -/N to prevent recursiveness.

delete Schedule files, directories, or symbolic links to be removed from the repository.
(What happens if the directory is non-empty? Need testing.)

copy Copy items and schedule them for addition into the repository. Inherits history
information.

move Move items, i.e., perform svn copy; svn delete

status Reports all changes made in the working directory. There are many different status
codes, please refer to Chapter 9 in the svn book for the list of codes. Recursive. -v
switch will output information about every item in the working copy. -u will report
whether items in the working copy is out of date.

diff Prints file changes in unified diff format. Useful for creating patches, svn diff >
patchfile. With no switches, comparison is done against the pristine working copy,
i.e., only locally changed files will show differences. Use -r for comparison against
the repository.

revert Reverts the item to its previous state, i.e., changes are disregarded and item
restored, and any (svn) scheduled tasks are reset.

resolved Tell subversion that you resolved a conflict. Issuing this command will remove
the temporary files created by svn update when a conflict is spotted by subversion.
There are other ways of resolving conflicts but use this command. Subversion will
not accept a commit until conflicts are resolved. Note, you must specify item in the
command, and be careful, if you do svn resolved, subversion accepts this without
checking that you really resolved the conflict and will subsequently accept a commit
without making a fuss.

commit Commit your changes. Tree changes are performed in the repository when you
issue commit. Use -m "My message.” to supply a log message, or if you prefer to
write an essay in a file, you can use --file filename. If you omit the message, then
an external editor is launched. A commit is refused if you try to commit out of date
items.

log Shows you broad information: log messages attached to revisions, and which paths
changed in each revision. Verbose information available, -v. Recursive.

cat This is used to retrieve any file as it existed in a particular revision number and
display it on your screen.

list Displays the files in a directory for any given revision.

cleanup Will cleanup subversion if subversion ended up in an undefined state due to
unexpected interruption during some subversion command. Locks can be resolved
with this command.

17

import A quick way to copy an unversioned tree of files into a repository, creating inter-
mediate directories as necessary.

D Item properties

You can set properties (meta-data) on items. Properties are arbitrary name/value pairs
associated with files and directories in your working copy. For more information see the
subversion book.

The special properties supported by subversion are
svn:eol-style Possible values are native, CRLF, LF, CR
svn:executable is used to define whether a file is an executable or not.

svn:externals Read documentation, this is, I think, a wonderful thing. Use this to make
subversion automagically checkout stuff from other locations/repositories within
your subversioned structure.

svn:ignore is a nice way to add a property to a directory that contains files not under
subversion control to avoid cluttering when using svn status.

svn:keywords is used to define whether you want subversion to perform keyword sub-
stitution. Where the keyword is inserted in your files is controlled by a keyword
anchor, $KeywordName$. Supported keywords are

HeadURL or URL

Id

LastChangedBy or Author
LastChangedDate or Date.

LastChangedRevision or Revision or Rev

To set the svn:keywords property do something like

svn propset svn:keywords "LastChangedDate Author" filename
sun:mime-type is used to set the mime-type of a file.

To set or get a property name, use the svn propset and svn propget sub-commands.
To list all properties on an object, use svn proplist.

Subversion provides some automatic property setting when you do svn add or svn import,
e.g. if subversion thinks you are adding a binary file, the svn:mime-type is set to
application/octet-stream (alas the general binary mime type). Subversion does not
try to do smarter, i.e., figure out that a file is a png graphics which should have mime type
image/png). However, you can affect the way subversion sets properties automatically by
changing your config file. You can make subversion to recognise a pattern like *. jpg,
and consequently set the mime property to image/jpeg. We supply a set of options to
add into your config file in Appendix F.

18

E Repository side stuff

Here we provide an account on some actions that can be made on the server side.

e There are ways to (really) remove items from a repository, i,e, all tracking is lost.
e There are straightforward way to split/merge projects on the server side.

e There is a possibility to add hooks on the server side for different subversion com-
mands.

e There are prepared ways to make subversion to send mail of commit information,
and to trigger backups at every commit.

e Log messages can be modified. There are even ways to allow users to modify log
messages, but these are disabled by default.

e The administrator should look out for outstanding, non-finished, transaction. Dead
transactions should be remove, see more in the book (subsection “Repository cleanup”)

e Repository migration is possible (read this as CVS to subversion).

E.1 Setting up a repository

There is a file /path/to/svn/README on the repository server. This file contains a short
description, with links to project web sites where appropriate, about the projects hosted.
Please keep this file updated when projects are added or removed.

Initialise a repository (here base)
svnadmin create /path/to/svn/repository/base

Comment: The addition of files and directory structure to the project is done from the
client side as usually after the project is checked out, or a directory layout can be forced
onto the project (see below).

E.1.1 Repository access

Using a web server with svn support you set up repository access using your web servers
authentication methods. On apache webdav migth be used where two files passwd and
access located in /path/to/svn/ (file name and directory set in subversion/apache con-
figuration) are used to set up authentication.

Using svnserve the repository access is set up by changing to the repository configuration
directory

cd /path/to/svn/repository/base/conf

Create a passwd file (you could copy a template from another existing project). Add
users into this file, these will all have read/write privileges. svnserve.conf must be
setup (again, copy a template), where also (optional) anonymous access is set up.

19

E.2 Administrator enforced repository layout

Follow these steps to enforce the recommended repository layout in new repositories:

mkdir tmpdir
cd tmpdir
mkdir project
mkdir project/trunk
mkdir project/branches
mkdir project/tags
svn import . file:///path/to/repos \
--message ’Initial repository layout’
Adding project
Adding project/trunk
Adding project/branches
Adding project/tags
Committed revision 1.
cd ..
rm -rf tmpdir

E.3 Adding a post-commit hook to a repository

As an example of how to add an post-commit hook simply place the trac-post-commit-hook!!
script somewhere in the file hierarchy (e.g. /path/to/svn/contrib). Create a shell script
post-commit in the /path/to/svn/reposotpry/hooks directory that contains the below
block of code (there should be a template script to copy in the hooks directory)

REPOS="$1"
REV="$2"

LOG=‘/usr/bin/svnlook log -r $REV $REPOS‘

AUTHOR=/usr/bin/svnlook author -r $REV $REPOS‘

TRAC_ENV="/path/to/tracs/trash/’

TRAC_URL="http://lev.thep.lu.se/trac/trash/’

/usr/bin/python /home/max/svn/contrib/trac-post-commit-hook \
-p "$TRAC_ENV" \

-r "$REV" \
-u "$AUTHOR" \
-m "$L0OG" \
-s "$TRAC_URL"

Make sure the post-commit script is executable.

Uhttp:/ /projects.edgewall.com /trac/browser/trunk/contrib /trac-post-commit-hook?format=raw

20

F Configuration options

When you run svn for the first time a new directory is created for you, $ (HOME) / . subversion.
In this directory you find the configuration file, config, that is used by the subversion
programs. We provide a configuration for you with mandatory options and recommended
options. Copy these into your configuration file.

[miscellanyl]

recommended options

global-ignores = *.0 *.lo *.la #*x# .*.rej *.rej .*" x7 .#*x .DS_Store
mandatory option

enable-auto-props = yes

all auto-props setting below are mandatory
[auto-props]

.bat = svn:eol-style=native;svn:keywords=Id

.Cc = svn:eol-style=native;svn:keywords=Id

.cc = svn:eol-style=native;svn:keywords=Id

.cpp = svn:eol-style=native;svn:keywords=Id

.css = svn:eol-style=native;svn:keywords=Id
.doxygen = svn:eol-style=native;svn:keywords=Id
.dtd = svn:eol-style=native;svn:keywords=Id

.h = svn:eol-style=native;svn:keywords=Id

.hh = svn:eol-style=native;svn:keywords=Id

.html = svn:eol-style=native;svn:keywords=Id Date
.java = svn:eol-style=native;svn:keywords=Id

.jar = svn:mime-type=application/x-java-archive
.js = svn:eol-style=native;svn:keywords=Id

.jsp = svn:eol-style=native;svn:keywords=Id

.jpg = svn:mime-type=image/jpeg

.m4 = svn:eol-style=native;svn:keywords=Id

.pl = svn:eol-style=native;svn:executable;svn:keywords=Id
.pm = svn:eol-style=native;svn:keywords=Id

.png = svn:mime-type=image/png

.R = svn:eol-style=native;svn:keywords=Id

.sh = svn:eol-style=native;svn:executable;svn:keywords=Id
.tex = svn:eol-style=native;svn:keywords=Id

.txt = svn:eol-style=native;svn:keywords=Id

.xml = svn:eol-style=native;svn:keywords=Id

.xsd = svn:eol-style=native;svn:keywords=Id

.xsl = svn:eol-style=native;svn:keywords=Id

¥ K K X X K K X X K K X X K K K X X K X X X ¥ ¥ X X

AUTHORS = svn:eol-style=native;svn:keywords=Id
bootstrap = svn:eol-style=native;svn:executable;svn:keywords=Id
Changelog = svn:eol-style=native;svn:keywords=Id

configure.ac = svn:eol-style=native;svn:keywords=Id
INSTALL = svn:eol-style=native;svn:keywords=Id
Makefile = svn:eol-style=native;svn:keywords=Id

21

Makefile.am = svn:eol-style=native;svn:keywords=Id
NEWS = svn:eol-style=native;svn:keywords=Id

README = svn:eol-style=native;svn:keywords=Id
references.bib = svn:eol-style=native;svn:keywords=Id
TODO = svn:eol-style=native;svn:keywords=Id

The global-ignores define file patterns that is to be ignored when a svn status is
issued. The auto-props patterns are only used when you add files and directories, i.e.,
using svn add or svn import.

We also supply four bash shell aliases that make status checks of your working copy easier,
add them to your .bashrc

alias svnl="svn log -r 1:HEAD -v" # Show log messages

alias svnm="svn status -u -q" # Show locally/repository changed items
alias svnn=’svn status -q’ # Show locally changed items

alias svns="svn status -u -q -v" # Show status of all items

22

