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Abstract

We describe a statistical measure, Mass Distance Fingerprint, for automatic de
novo detection of predominant peptide mass distances, i.e., putative protein mod-
ifications. The method’s focus is to globally detect mass differences, not to assign
peptide sequences or modifications to individual spectra. The Mass Distance Fin-
gerprint is calculated from high accuracy measured peptide masses. For the data
sets used in this study, known mass differences are detected at electron mass ac-
curacy or better. The proposed method is novel because it works independently
of protein sequence databases and without any prior knowledge about modifica-
tions. Both modified and unmodified peptides have to be present in the sample to
be detected. The method can be used for automated detection of chemical/post-
translational modifications, quality control of experiments and labelling approaches,
and to control the modification settings of protein identification tools. The algorithm
is implemented as a web application and is distributed as open source software.
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1 Introduction

In proteomics, high throughput approaches using mass spectrometry have be-
come widely used. These approaches promise to enable researchers to assess,
on a large scale, both expression level and functional state of the proteins that
carry out most functions in a cell. The success of proteomics experiments,
such as studies of protein function and cell signaling pathways, ultimately de-
pends on how well the protein content in samples is identified and annotated.
Consequently, a lot of effort is put into identifying the constituent proteins
using mass spectrometric methods. The goal is to assign acquired spectra to
known peptide sequences and potential co- and post-translational modifica-
tions. To this end database search engines were rapidly developed after the
introduction of ionization techniques for biological mass spectrometry [1-5].
These approaches depend on sequence databases that are used by the engines
to match real spectra to theoretical in silico spectra. The matching is com-
plicated by the fact that there are protein modifications and the sequence
databases store the unmodified sequences. To resolve this, the researcher typi-
cally defines a small set of modifications for inclusion in the matching process.
But due to combinatorial explosion, the usage of a large number of variable
modifications is inherently difficult, if not impossible, in these approaches. A
related alternative approach is error tolerant searching [6-8| that considers a
multitude of modifications or mutations.

The need to keep track of protein modifications is readily recognized by the
proteomics community, and few repositories of known peptide modifications
have been created. The RESID database [9] lists co- and post-translational
modifications. Post-translational modifications (PTMs) are also stored in Delta
Mass [10] together with information on modifications induced by sample prepa-
ration procedures for mass spectrometric analysis, but mass changes are only
given as integer values. FindMod [11] also lists some modifications and detects
PTMs from this list in conjunction with a protein sequence and a few precursor
masses. The most comprehensive collection of chemical and biological modi-
fications being relevant to mass spectrometry can be found in UniMod [12].
The list of known protein modifications is growing; in December 2006, UniMod
lists 495 modifications including 144 amino acid substitutions [6].
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The focus of the method presented here, Mass Distance Fingerprint (MDF),
is to globally assess predominant precursor mass distances, i.e., finding dom-
inant PTMs in a data set; it is not aimed for assigning peptide sequences or
modifications to individual spectra. The MDF is limited to the detection of
frequent precursor mass distances and will not detect low abundance modi-
fications. The method to calculate the MDF of a data set has three stages.
First, the Mass Distance Histogram (MDH) is calculated. Second, a statistical
random background model, also reported in this paper, is subtracted from
the experimentally observed MDH. Third, Gaussian distributions are fitted to
the remaining signal for accurate determination of mass distances. The result-
ing list of frequent mass distances and related information is then the Mass
Distance Fingerprint.

The novelty of MDF is its independence of both sequence databases and of
prior knowledge about modifications, since it uses only precursor mass infor-
mation. In MDF, MS/MS level data is not used. Approaches that use both
MS/MS level and sequence information exist. In the P-mod algorithm [13],
MS/MS spectra are compared with in silico generated spectra using sequence
information provided to the algorithm. In contrast, in MDF the aim is to detect
modifications de novo. The ICATcher [14] and ModifiComb [15] algorithms,
like P-mod, use MS/MS information but work independently of sequence in-
formation. In contrast to P-mod, ICATcher relies on both the modified and
unmodified peptide being measured. The latter dependency is also valid for
the MDF presented here.

The MDF has a different conceptual focus than the methods mentioned above;
the MDF provides a measure of modifications on the level of a collection of
MS spectra, i.e., MDF is not applicable directly on single level spectra. Ex-
tending the MDF to single level spectra is possible with existing technologies
comparing MS/MS spectra [14].

Both the MDH and the MDF are implemented as an algorithmic framework
called Peptoscope. The Peptoscope source code is distributed under the GPL
license version 2 [16].

In essence Peptoscope needs the peptide masses to calculate the MDH. These
masses are fed into Peptoscope using is the widely used Mascot Generic File
(mgf) [17]. Conveniently, most commercial mass spectrometer software are
capable of generating such mgf formatted files and the mgf format is usu-
ally used as input to database interrogation software. Of the available data in
the mgf, Peptoscope uses the charge and m/z information to determine the
peptide masses. Peptoscope output is a list of detected predominant mass dis-
tances and includes annotation with known modifications if applicable. How-
ever, no prior modification information is used in the calculation of modifica-
tions present in the data.



2 Experimental details

Four experimental data sets are used to illustrate the applicability of the MDF
for de novo detection of chemical and post-translational modifications. The
four data sets are published as supplemental material [18].

The tryptic peptide content of the four experiments was separated and ana-
lyzed by LC-ESI-MS/MS on a “Finnigan LTQ-FT” (Thermo Electron, Bre-
men, Germany), a hybrid instrument consisting of a linear ion trap and a
Fourier transform ion cyclotron resonance mass spectrometer. As in [19,14],
only doubly charged precursor masses were considered for all data sets.

Each data set contains one or more LC runs; each run contains hundreds if
not thousands of precursor masses. The data sets used represent the typical
variation of proteomic data in terms of both experimental setup as well as
the amount of data to be analysed, i.e., the number of tandem mass spectra.
The exact number of precursor masses used in one analysis can be found in
the Peptoscope output. The experimental details are given for each data set
in the results section.

2.1 Data set 1

Data set 1 is derived from an in vitro study of the human DNA mismatch
repair system. A DNA affinity matrix (DynaBeads derivatised with heterodu-
plex DNA containing an insertion/deletion mismatch) was incubated with
HeLa cell nuclear extract for either 5 (sample 1) or 25 minutes (sample 2) at
25° C. Proteins that bound to this matrix were subsequently eluted, reduced
and labeled with the heavy- and light-cleavable ICAT (isotope-coded affinity
tag) reagent [20,21] (Applied Biosystems, Foster City, CA, USA), respectively.
The differentially labeled samples were combined and digested with trypsin
(Sequencing Grade Modified Trypsin, Promega, Madison, WI, USA) at 37° C
for 24 hours. Peptides were first purified with a cation exchange column (ICAT
Cation-Exchange Cartridge, Applied Biosystems) and ICAT-labeled peptides
were subsequently extracted with an Avidin affinity column (ICAT Cartridge
Avidin, Applied Biosystems). The acid cleavage of the biotin tag and all the
remaining steps were performed according to the manufacturer’s instructions.
Sep-Pak columns (Vac C18 lcc, 50 mg, Waters, Milford, MA, USA) were used
for further clean up of the affinity-purified fraction. After mass spectrometric
analysis and data processing this data set was analysed by Peptoscope using
4199 precursor masses.



2.2 Data set 2

Data set 2 originated from mouse cortical synaptosomes and was obtained as
follows: mouse cortical synaptosomes were prepared by differential centrifuga-
tion and sucrose density gradient fractionation as previously described [22].
Synaptic proteins were cleaned by acetone precipitation and solubilised in 7
M urea, 50 mM ammonium carbonate pH 7.8 before cysteine reduction and
alkylation. Tryptic digest was performed overnight at 37°C with a final urea
concentration of 1.5 M, and an enzyme to protein ratio of 1:25. The result-
ing peptide mixture was acidified to pH < 3 with acetic acid containing 25%
acetonitrile, centrifuged to remove insoluble matter before fractionation us-
ing a polySULFOETHYL A strong cation exchange chromatography HPLC
column (PolyLC, USA). After lyophilisation, peptide fractions were desalted
using reverse phase trap cartridges. Finally 819 precursor masses were used
for Peptoscope analysis.

2.8 Data set 3

Data set 3 is derived from a mouse brain sample with background as fol-
lows. Neurotrypsin is a trypsin-like serine protease predominantly expressed
in the peripheral and central nervous system (CNS) [23]. A truncating dele-
tion in the human gene results in severe mental retardation [24]. To investigate
the role of the proteolytic activity of neurotrypsin in the CNS we generated
transgenic mice overexpressing neurotrypsin specifically in neurons starting
at birth. In search for neurotrypsindependant changes in the neuronal net-
work, hippocampi of wild-type (wt) and transgenic (tg) mice were prepared
and the proteins were analyzed using the ICAT technology [20,21]. Hippocam-
pus homogenate was subjected to two consecutive centrifugation steps each
at 3000x g, separating nuclei and cell debris. Then, with a 34000x g centrifu-
gation step S2 (soluble) and P2 (pellet) subcellular fractions were produced.
S2 mainly consists of soluble proteins and light membrane particles, such as
synaptic vesicles. P2 comprises heavy membrane particles including synapto-
somes, Golgi apparatus, endoplasmatic reticulum, mitochondria and plasma
membranes. The samples were treated as described in the protocol from Ap-
plied Biosystems Cleavable ICAT Reagent Kit for Protein Labeling. In brief,
the proteins were denatured and reduced, followed by labeling with Cleavable
ICAT Reagent by alkylation of free cysteines. The protein mixture was di-
gested with trypsin and the complex sample was fractionated using a cation
exchange column. The biotinylated peptides were subsequently purified on an
avidin cartridge. Further sample treatment as in data set 1. The input for
Peptoscope was an mgf file containing 16177 precursor masses.



2.4 Data set 4

Data set 4 is a standard protein mix of proteins as supplied by Applied
Biosystems, treated with cleavable ICAT as data set 1. The mix consists
of six proteins; bovine serum albumin (Swissprot accession number P02769),
[-galactosidase (P00722), a-lactalbumin (P00711), B-lactoglobulin (P02754),
lysozyme (P00698), and apotransferrin (P02787). For Peptoscope 912 precur-
sor masses were used.

3 Methods

In this section, the Mass Distance Histogram (MDH) is defined, and a statis-
tical model for the MDH is developed. The statistical model is derived from
a simulation of random peptides. The Mass Distance Fingerprint (MDF) is
derived from the MDH and the section is concluded with an illustration of the
MDF using data set 4.

3.1 The Mass Distance Histogram and the Mass Distance Fingerprint: defi-
nition, stmulation, model

3.1.1 Mass Distance Histogram: Definition

Given a set of mass spectrometric measurements, the MDH is defined as the
distribution of distances between all possible pairs of measured peptide masses.
For a number of n masses, there are n(n — 1)/2 mass distance pairs. For the
purpose of this study, Peptoscope analysis was restricted for mass differences
up to 100 Da, and a bin size of 0.01 Da was used in the MDH. As an example,
data set 1 consists of 4199 precursors yielding 8813701 pairs of which 1791599
have a mass distance in the histogram range.

3.1.2  Simulation and model

To investigate the expected random distribution R(Am) of an MDH, an ar-
bitrary number of 100 million peptide pairs were generated randomly in a
computer simulation. The mass distribution for these random peptides follow
the natural distribution of peptide masses and for each of these peptide pairs,
the mass distance Am = |m; — my| was calculated. For these mass distances,
a histogram M DH(Am) was generated in the range between 0 to 100 Da
(see Figure .1). The regular structure of the simulated distribution can be



modeled well by a sum of Gaussian distributions with distance § and constant
width og:
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Similar results are found by performing a random pairing of peptides emanat-
ing from an in silico tryptic digest of any protein sequence database and using
these peptide pair mass differences as the background R. This is a result of the
fact that a tryptic digest will yield a peptide mass distribution that is a sum of
Gaussian like distributions with centres approximately separated at integer Da
values with empty regions between the Gaussians. Therefore the background
is best described as the distribution of masses of unmodified random peptide
pairs. Peptoscope is relying on a superposition of the measured modified and
unmodified peptides, where the modifications will be additional Gaussians on
top of the random background. The modification induced Gaussians are much
narrower than the background distribution of Gaussians.

The central statement of Equation 1 is that for all nominal mass differences,
the fitting Gaussian curves have the same width and the same height with
high predictive power. The factor in front of the sum in Equation 1 ensures
that R(Am) behaves like a probability measure,

iR(Am,JR) d(Am) = 1. (2)

In this study, s is 100 Da as a consequence of the mass range choice of 0 to
100 Da in the MDH.

The ¢ in Equation 1 originates from the fact that true peptide masses are
distributed in clusters with a mean value of roughly 7 - 1.000458 Da where
is an integer [25,26]. For the mass differences dealt with here, it is found to
be approximately 1.00044 Da. The model has a single parameter, o, which
is obtained from a measured M D H(Am) by minimizing the square deviation,
E(or), between the background model and M DH (Am):

E(og) = / [MDH(Am) — R(Am, og)]2 d(Am). (3)

Inserting og, obtained by minimizing F(og) of Equation 3, into Equation 1
yields the background model R(Am). In Figure .1, both the simulated M DH (A)
and the model R(Am) are shown. The overall similarity is good and using Pep-
toscope, the user can and should visually inspect the quality of the background



model fit compared to the measured MDH.

It should be noted that oz must be fitted for each experiment individually, it
is not a universal constant. To appreciate this statement we have to delve into
how the background masses are built up. All peptide masses are built up by a
composition of electron, proton, and neutron masses. This means that for any
given mass there are many random ways to compose a molecule that will be
close to that mass. The resulting masses typically do not match other masses
exactly; a distribution at approximately integer masses (in Da) is built up.
This natural width at integer masses will become larger for increasing mass
just by the fact that there are so many more combinations contributing to
a specific heavy mass (neighbourhood) as compared to a specific light mass.
The variation in width will of course be visible also when mass differences are
studied.

To further test the MDH background model, we artificially digested a number
of protein databases using the Perl script fasta2MDH.pl (obtainable from the
authors by email). The script fasta2MDH.pl calculates an MDH using a protein
FastA file as input; it uses the range 0-100 Da with 10000 bins, exactly as
used in this paper. We found that the statistical description outlined in this
section is valid also for this type of artificial data that describes the underlying
experimental background well (data not shown).

Obviously we do not have a completely random distribution of peptides since
we are measuring a specific composition of proteins. This is actually the im-
portant idea of Peptoscope, the non-random component of the measured mass
distributions will be on top of the random background noise. However, in any
given experiment we do not know whether the background is build up by light
or heavy masses but we know that the background will vary between experi-
ments (and be a mix of heavy and light masses). This is the reason to introduce
the fitting parameter o — to compensate for the unknown background. From
simulations of the background we learn that og varies between 0.1 and 0.4 Da
up to 6000 Da (data not shown).

As mentioned above, a real measurement is of course expected to contain
more information than a simple random background signal. Depending on
the experimental details, a number of modifications are likely to be present,
and sometimes both the modified and unmodified form of a peptide will be
measured. Thus, a better approximation of a real measurement would be an
extension of Equation 1, where the effect of the background R(Am) and Gaus-
sian signals induced by modification mass shifts Am; are summed:

#mod . A —A . 2
MDH(Am) =~ R(Am) + ) 57 exp—( m2 ij) :
g

j=1 0j J

(4)

N



For each modification term j in Equation 4, three Gaussian parameters Am,
s;j, and o are obtained by minimizing the deviation between the model and the
experimental M DH(Am) in the vicinity of Am;. Here the fitting parameters
corresponds to the mass distance, Am;, the intensity of the signal, s;, and the
width of the fitted peptide peak, o;.

3.1.3 The Mass Distance Fingerprint

The MDF for an experiment contains several triplets, Am;, s;, and o;, as
obtained from Equation 4; triplets with s; > 1/3 %« R(A,,) are reported. Two
numbers extend each triplet of the MDF; The first number extending the MDF
is the estimated number of true pairs: the core of the approach is to think of
the Gaussians described by m;, s;, and o; as originating from modification
induced effects. The corresponding area of the Gaussian is calculated from o;
and s;. Using the total number of pairs under the curve, this can be expressed
in terms of the estimated number of true pairs. The second number extending
the MDF is the estimated 420 true positive classification rate. The latter two
numbers are illustrated in Figure .2.

Within the Peptoscope framework, the MDF is further annotated with mass
differences induced by known peptide modifications (retrieved from UniMod [12]).
When the measured Am; is close to a known PTM induced mass change, this

is reported; a list of known isobaric modifications at that Am; is given together
with the mass deviations from the listed mass difference.

MDF can not distinguish isobaric modifications, nor does it state if a mod-
ification adds or subtracts mass from the peptide, and both the unmodified
and modified form of a peptide have to be measured for the corresponding
modification to be included in the MDF.

3.2 Illustration: Fxperimental Results

This section illustrates above concepts with results from data set 4 where 912
precursor peaks were examined. 912 precursors correspond to 415416 possible
pairs, and of these pairs, 52478 precursor mass distances (Am) are in the range
between 0 and 100 Da. Minimizing Equation 3, the optimal o in Equation 1
for this data set was found to be 0.055 Da. The measured M DH(Am), and the
background model R(Am) are displayed in Figure .3. There are two sources
of deviations between the model and the measurement. The first deviation is
that the M DH(Am) is not close to zero in the regions between the nominal
masses differences where R(Am) is close to zero. The effect of this minor
discrepancy is negligible for the MDF, and the source of the difference may
be an effect of erroneous precursor charge determinations or noise from the



instrument. The second deviation is sharp Gaussian peaks of which some are
close to known modification mass differences. This second effect is addressed
by the modification terms in Equation 4.

To check whether the sharp peaks on top of R(Am) are likely to correspond to
PTMs, Gaussian distributions were fitted to the peaks as described in Equa-
tion 4. While the binning of the M DH(Am) is performed with a bin width
of 0.01 Da resulting in 10000 bins totally, the Gaussian fitting for the signal
peaks is performed with 10 bins (each with an width of 0.0015 Da) for every
signal peak. The fitting is achieved by minimizing the least mean square error
between the Gaussian model and the signal peak; resulting in the three MDF
parameters Am;, s;, and o; for each signal peak. The background, R(Am), is
subtracted from the measured M DH (Am) before the fitting procedure.

For the method to work it is necessary that o; is much smaller than og, i.c.,
the modification induced peaks must be much sharper than the underlying
background distribution. The sharpness of the modification induced peaks,
0j, is an effect of the intrinsic accuracy of the instrument in MS mode. If the
mass accuracy is improved by some factor, o; would decrease by the same
factor. As described in Section 3.1.2 the width of the background distribution,
OR, is mainly determined by the length distribution of the measured peptides
and is typically above 0.05 Da. Thus, the accuracy of the mass spectrometer
should be somewhat below 0.01 Da for the method to be reliable. For peptides
with masses between 1000 and 3000 Da, this translates to ppm measurement
accuracy or better.

The above method yields the MDF for data set 4 presented in Table .1. Of the
16 signals, nine can be annotated with known modifications from UniMod.
Eight of the nine annotated mass differences are closer than 0.0006 Da to the
mass differences that would be the effect of the corresponding modifications
acting on peptides. To set above number into numerical context, an electron
has a mass of 0.000549 Da. The modifications used for annotating the MDF
are taken from the UniMod web site http://www.unimod.org [12] (December
2006). In the mass range from 0-100 Da, there were 269 modifications corre-
sponding to 152 different mass distances. The degeneracy is due to isobaric
modifications. In the MDF report, the PSI-MS Names are preferred over the
Interim Name from UniMod (cf. http://www.unimod.org). The complete list
of UniMod modifications used in this study is contained in the supplemental
material [18].
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4 Results and discussion

In this section we present and discuss the MDF's obtained for the four data
sets used in this study. A detailed validation of the results using MS/MS
information is reported, and the importance of mass accuracy for Peptoscopes
success is illustrated and quantified.

4.1 MDFs for the four data sets

Results for data set 1

The list of Peptoscope detected signals is shown in Table .2 for data set 1.
This data set consists of two runs, a SIM scan and an MS survey scan pro-
ducing 4199 precursors yield 8813701 pairs of which 1791500 fall in the range
between 0 and 100 Da. o of Equation 1 is found to be 0.105 Da. The two
strongest signals belong to the repetitive monomeric unit of polyethylene-
glycol (CyH,0) with a mono-isotopic weight of 44.0262 Da (i.e., 88.0524 Da
for a CoH,O — CoH4O unit). The third signal is at 17.0265 corresponding to
an elemental difference of (H3N;), most probably pyroglutamic acid formed
from glutamine. This modification is frequently seen in protein samples mea-
sured in our laboratory. Three MDF signals, ++C2H7ON, ++71.02619, and
2*Ethanolyl, are modifications that have been detected repeatedly in our lab-
oratory, however these three modification are not listed in UniMod. Each of
the top five signals in Table .2 are estimated to correspond to more than
10000 pairs, with the 420 true positive rate as illustrated in Figure .2 being
above 90 percent. The next two signals in the MDF| at Am = 4.9554 Da and
Am = 26.9988 Da, are not close to known modifications. The last signal in
the list, Am = 21.9815 Da is supposedly a sodium adduct of chemical compo-
sition H(—1)Na. All, except Asp—His, MDF signals that could be annotated
in this data set match the exact mass value with smaller deviation than the
weight of an electron, 0.000549 Da.

In order to test the significance of the results, a Peptoscope analysis was
performed for this data set, but with the mass accuracy being artificially
decreased; Random mass shifts uniformly distributed in the range [-0.1,0.1] Da
were added to all precursor masses, and nominal masses were shifted uniformly
between 0 and 4 Da. Peptoscope was run on the resulting synthetic data set.
No signal corresponding to known modifications, having a signal stronger than
the weakest listed in Table .2, was found. Also, in the low mass accuracy LCQ
(3D ion trap) data set mentioned below, no signals were found.
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Results for data set 2

The MDF results for data set 2, originating from a single run, are the weakest
of this study, as can be seen from Table .3. 819 precursors give 334971 pairs
of which 101945 are in the MDH mass range. The optimal is oz = 0.055 Da.
Three out of four predominant annotated mass shifts are found within sub-
electron mass accuracy. The Gamma-carboxylation annotated mass distance
is just 0.0001 Da off the true value.

Results for data set 3

Originating from 33 runs, data set 3 had by far the most doubly charged
precursors, 16177. This results in more than 130 million pairs of which more
than 19 million are within the MDH range. or is 0.105 Da and ten out of
eleven signals as listed in Table .4 were annotated. All signals except that in
the guanidination are detected with sub-electron mass accuracy. Among the
top signals, oxidation, ICAT, and pyroglutamic acid signals were found.

Computing time for this data set is roughly 30 minutes CPU time. Computa-
tionally, it is on the edge of what the current implementation of Peptoscope
can handle on usual desktop computer equipment. However, the current imple-
mentation is not optimized for speed and can be modified to run significantly
faster. Dealing with more than 100 runs for a single MDF is possible.

Results for data set /

Data set 4 originates from a single run with ICAT-light and ICAT-heavy
peptides being mixed at a ratio of 1:1. The MDF obtained with Peptoscope
was derived from 912 doubly charged precursors i.e., 415416 pairs of which
52478 were in the MDH mass range. The optimal o was found to be 0.105
Da for this data set. As can be seen from Table .1, Peptoscope annotated
nine of the sixteen MDF signals with known modification information. Mass
accuracy is about electron mass or better. The mass shift at 25.0252 Da is
not annotated, but has been repeatedly seen in Peptoscope analyses in our
laboratory.

4.2 Validation of MDF results using MS/MS

The novel aspect of the MDF is that it uses peptide information only to detect
predominant mass distances. Here, MS/MS information is used to validate
and confirm MDF results. Detailed data of this validation can be found in the
supplemental material [18].
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MDF results are validated with the deltaMasses [27] program originating from
the ICATcher algorithm [14]. deltaMasses compares MS/MS spectra against
each other, looking for pairs of unmodified /modified peptides using a true sta-
tistical scoring scheme. For the validation of MDF reports, we used a delta-
Masses probability cutoff p < 0.00001 i.e., one would expect one false positive
pair in 100000 detected pairs. deltaMasses does not detect pairs of MS/MS
spectra below a mass difference of 4.5 Da. Therefore, low Am MDF entries do
not have a corresponding MS/MS value.

The question raised and answered by this validation is which part of the true
pairs detected by the MDF are confirmed by a MS/MS validation test. Table .5
lists the number of detected pairs for both the MDF and the technology using
MS/MS results. It was not possible to analyse data set 3 with the MS/MS
approach because the software currently has an input limit of 10000 MS/MS
spectra. The numbers in the table are of similar order of magnitude which
underlines the validity of MDF results.

4.8  Importance of mass accuracy

To illustrate the importance of high mass accuracy, the Peptoscope algorithm
was applied to an ICAT data set generated with a Thermo Electron LCQ
(3D ion trap) mass spectrometer [14]. The Peptoscope distribution for this
LCQ data set, having a precursor mass accuracy below 1 Da [14], is shown in
Figure .4. Due to the low mass accuracy, Peptoscope is unable to detect any
signal; the observed LCQ M DH (Am) is statistically seen flat while the high
mass accuracy LTQ-FT MDH clearly follows the statistical model described
by R(Am) and the model of Equation 4 (see Figure .3).

The importance of high mass accuracy is also illustrated in Figure .2. Imagine
that the mass accuracy would be increased by a factor of two. The green curve
would have half ¢ and double height while the light grey area would remain
constant. However, the dark grey area (false positives) would decrease by a
factor of 2. Thus, high mass accuracy is pivotal for the discriminative power
of the method.

Both the unmodified and modified form of a peptide have to be measured for
the corresponding modification to be detected. A possible strategy to detect
complete modifications in a low complexity protein mix, with known protein
identities, would be to synthesize the corresponding peptides. Measuring the
synthesized peptides and performing a combined MDF would make it possi-
ble to also detect constant modifications with the MDF. In this context, the
question arises what proportion of biologically meaningful PTMs will feature
both modified and unmodified forms. Many modifications are known to be
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reversible, for example phosphorylation of serine, threonine, and tyrosine, and
acetylation of lysine. Since the reverse reactions are catalyzed by enzymes, the
unmodified form of the peptides is usually present. In particular phosphoryla-
tions have low stoichiometries, i.e., phosphorylated amino acids are generally
less abundant than the corresponding nonphosphorylated residues [28]. Stable,
irreversible protein modifications such as arginine methylation tend to be more
complete, however, hypomethylated proteins are usually still detectable [29].
The different stoichiometry is one of the reasons why phosphorylation is not
detected but methylation is.

5 Concluding remarks

A statistical model for the distribution of peptide mass distances has been
presented; the corresponding histogram is called the Mass Distance Histogram
(MDH). A model for the expected random background of the MDH is given
in a form of Gaussian distributions. From this model for the MDH, the list
of mass deviations is calculated; this is the mass distance fingerprint (MDF).
Both the MDH and the MDF are calculated from precursor mass data only.
The method depends on the use of mono-isotopic masses, i.e., the knowledge of
precursor charges. m/z values alone would be insufficient because wrong mass
determination would blur signals of the MDH. No MS/MS or sequence in-
formation is used, and knowledge about known chemical or post-translational
modifications is not required. Thus, the MDF is a true de novo PTM detection
approach. It is shown that the entries of the MDF are frequently corresponding
to weight shifts induced by known chemical or post-translational modifications
of the peptides.

The detection of a modification on a single peptide measured only once seems
difficult using the MDF approach. However, imagine a case where a peptide
is measured 10 times, 5 times unmodified and 5 times modified. For this case,
there are 25 pairs. If this is shifted to the situation of 9 unmodified and 1
modified, there are still 9 pairs. This way, the MDF compensates for the rare
modification problem to some extent.

The nature of the MDF allows it to be used as a fast quality control of la-
belling approaches where both light and heavy form of a peptide should be
predominantly present; Not detecting the expected mass shift would indicate
a failure in the labelling procedure.

The MDH bin width used in this script was 0.01 Da. We found this to work
well throughout our LTQ-FT experiments. For instruments like an Orbitrap,
which can achieve better accuracy with about 1/2 ppm accuracy using lock
spray calibration, it might be good to decrease the bin width accordingly.
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The current version of Peptoscope works with simple histograms; if a true
signal falls exactly in between two bins, the corresponding mass distance signal
would be split up in two adjacent bins. More advanced binning approaches are
possible but are not the scope of this work.

For the high accuracy precursor masses used in this study which were gen-
erated by an LTQ-FT, modifications are identified at electron mass accuracy
or better. The MDH and the MDF are implemented in a framework called
Peptoscope. Peptoscope provides an annotation of the de novo detected mass
differences, this annotation is taken from the list of known modifications doc-
umented in UniMod. Peptoscope is implemented as a web application and
is distributed as open source software under the GNU public license. In this
study, only precursor masses were used. Obviously, the MDF is not limited to
this special case, it can be applied to the collection of all MS signals irrespec-
tive of MS/MS measurements being performed or not. Obtaining an MDF with
Peptoscope does not require any user interaction or parameters. Therefore, it
is possible to automate MDF generation directly on the mass spectrometer
instrument’s computer. We believe that the MDF has the potential to become
a standard technology on high accuracy mass spectrometers.
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Fig. .1. Comparison of a simulated M DH (Am) (red curve) and the model R(Am)
of Equation 1 (green curve) in mass range 5 to 10 Da. The MDH was obtained
from 100 million randomly generated peptide pairs. The quantitative agreement is
similar in the whole range between 0 to 100 Da.
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Fig. .2. Illustration of the method. Red curve: R(Am) having width og. Green curve:
the modification induced part having width o;. The red curve seems flat because
ogr >> o; This peak close to 6, = 58.005 Da is induced by a modification. The
area between the green and the red curve corresponds to the estimated number of
true pairs. 95 percent of these true pairs are within +20; distance from 58.005 Da.
The £20; boundaries are shown with blue lines.
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Fig. .3. Hlustration of the MDF concept with data set 4, mass distances ranging
from 8 to 10 Da. Red curve: the measured M DH(Am). Blue curve: R(Am) with
or = 0.055 Da. Green curve: signal used for deriving the Mass Distance Fingerprint.
In this case, Peptoscope finds a modification at Am = 9.02967 Da which is 0.00052
Da off from the theoretical value of the cleavable ICAT modification Am of 9.03019
Da. (See Table .1 for the complete MDF results of data set 4.)
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Fig. .4. Mllustrating the importance of mass accuracy. Scales are equal to those of
Figure .3. Red line: M DH(Am) obtained from an ICAT sample measured on an
LCQ mass spectrometer [14] in the mass range from Am = 8 to 10 Da. The plot
shows that the LCQ precursor data does not yield any signal with Peptoscope due
to low mass accuracy; the MDH fluctuates randomly around the expected random
value of 0.01 (blue line). This is to be compared with the LTQ-FT results shown in

Figure .3.

21



www.peptoscope.ms results for dataset4.mgf
version | precursors | total pairs range pairs | date model o
1.6 912 415416 52478 Mon Nov 27 19:01:20 CET 2006 0.055
mass distance fingerprint chemical/ptm annotation
mass o intensity number of +20 true ptm [unimod.org] deviation
[Da] (1074 “true” pairs | positive [%)] [10~*Da]
15.9947 14 1.1490 211.6 86 | Ouzidation 2
Deozxy
Ala—Ser
Phe—Tyr
9.0297 11 2.2284 3224 90 | Label:18C(9) 5
17.0260 13 0.7370 126.0 82 | Gln—pyro-Glu 5
Ammonia-loss
14.0154 10 0.6644 87.4 80 | Methyl 2
Ala—Gly
Glu—Asp
Ile«>Val
Thr—Ser
Val—Leu
6.9648 18 0.2660 63.0 717
58.0052 12 0.4256 67.2 76 | Carboxymethyl 3
Asp—Gly
Glu—Ala
25.0252 16 0.2949 62.1 68 | 7
0.9834 12 0.3716 58.7 73 | Amidated 6
Deamidated
Asp<—Asn
Glu—Gln
7.9957 4001 0.0010 52.6 01?7
33.9610 6 0.5872 46.3 84 | 7
30.0103 13 0.2970 50.8 68 | Pro— Pyrrolidinone 3
Hydroxzymethyl
Ser—Gly
Thr—Ala
33.0217 11 0.3702 53.6 72| 7
28.9787 2335 0.0010 30.7 1|7
1.0311 14 0.2088 38.5 64 | Lysaminoadipicsealde 51
1.9698 30 0.0052 2.1 517
18.0103 19 0.1504 37.6 53 | Dehydrated 3
Glu— pyro-Glu

Table .1

Peptoscope result for data set 4. In the mass distance fingerprint columns, the five
MDF values (described in Section 3.1) are printed for each signal. Annotation of the
MDF, together with mass shift from known chemical or biological modifications, is
shown in the chemical/ptm annotation columns. As annotations the PSI-MS names
are preferred and printed in italics whereas interim names are printed in normal
font style. The optimal o (Equation 1) for the analyzed data is given in the model
o field at top right.
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www.peptoscope.ms results for datasetl.mgf
version | precursors | total pairs range pairs | date model o
1.6 4199 8813701 1791500 Mon Nov 27 20:43:01 CET 2006 0.105

mass distance fingerprint chemical/ptm annotation
mass o intensity number of +20 true ptm [unimod.org] | deviation
[Da] [1074] “true” pairs | positive [%)] [10~4Da]

44.0259 15 2.8991 19528 93 | Ethanolyl 3

88.0522 16 2.5187 18097 92 | 2*Ethanolyl 2

17.0260 15 2.1099 14212 92 | Gin—pyro-Glu

Ammonia-loss

61.0523 15 1.7019 11464 91 | +4+C2H7ON 5

71.0258 15 1.5243 10268 91 | +471.02619 4
4.9554 9990 0.0014 6280 2|7

26.9988 9098 0.0015 6128 2|7

21.9815 14 0.8528 5361 88 | Cation:Na 4
9.9731 7335 0.0015 4941 2|7

83.0972 39 0.3566 6245 82 | 7

34.0525 14 0.7470 4696 88 | 7

48.9815 12 0.8472 4565 89 | ?

22.0206 732 0.0040 1316 5 | Asp«<His 114

39.0702 14 0.8325 5234 89 | 7

93.0081 14 0.6592 4144 87 | 7

98.0256 15 0.5389 3630 85 | 7

Table .2

Peptoscope result for the MDF obtained for data set 1. The strongest signals are two
PEG signals (called Ethanolyl in UniMod). The three modifications ++C2H7ON,
++471.02619, and 2*Ethanolyl are modifications that have been seen in our labora-
tory repeatedly, they are currently not listed in UniMod. The suggested C2H7TON
has a mono-isotopic weight of 61.05276 Da.
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www.peptoscope.ms results for dataset2.mgf
version | precursors | total pairs range pairs | date model o
1.6 819 334971 101945 Mon Nov 27 19:23:06 CET 2006 0.055
mass distance fingerprint chemical/ptm annotation
mass o intensity number of +20 true ptm [unimod.org] | deviation
[Da] [10—4] “true” pairs | positive [%] [10~4Da]
15.9947 20 0.3750 191.7 73 | Ouzidation 4
Deozy
Ala«Ser
Phe—Tyr
1.0019 23 0.2216 130.2 62 | Dehydro 59
27.9951 20 0.1836 93.8 59 | Formyl -2
Pro— Pyrrolidone
43.9899 25 0.1303 83.2 55 | Carboxy -1
Ala«<Asp
61.9560 757 0.0017 32.9 317
60.9898 979 0.0011 27.5 1|7
17.9535 178 0.0010 4.6 1 | Ile—~Met 29
Leu+—Met
5.9864 340 0.0040 34.7 317
44.9928 774 0.0010 19.8 0 | Nitro =77
86.9955 11 0.1010 28.4 51 | 7
17.9827 1605 0.0011 45.1 1 | Fluoro 79
62.1187 550 0.0040 56.2 9|7
44.0261 12 0.1447 44 .4 52 | Ethanolyl 1
49.9754 11 0.0571 16.1 40 | 7
59.9860 451 0.0029 33.4 317
45.9620 47 0.0127 15.3 15 | ?
Table .3

Peptoscope result for the MDF obtained for data set 2.
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www.peptoscope.ms results for dataset3.mgf
version | precursors | total pairs range pairs | date model o
1.6 16177 130839576 19093504 Mon Nov 27 11:31:03 CET 2006 0.105
mass distance fingerprint chemical /ptm annotation
mass o intensity number of +20 true ptm [unimod.org] deviation
[Da] [10—4] “true” pairs | positive [%] [10~4Da]
15.9945 24 0.1712 19665 70 | Ozidation 4
Deoxy
Ala—Ser
Phe—Tyr
14.0152 26 0.0726 9034 51 | Methyl 4
Ala—Gly
Glu—Asp
Ile<~Val
Thr«Ser
Val—Leu
31.9899 23 0.0969 10667 59 | Diozidation -1
1.9688 71 0.0137 4655 18 | 7
58.0057 21 0.0580 5829 46 | Carboxymethyl -2
Asp—Gly
Glu—Ala
44.0263 21 0.0615 6181 47 | Ethanolyl -1
42.0107 23 0.0604 6649 47 | Acetyl -1
42.0131 1233 0.0011 6491 1 Guanidinyl 87
Amidino
Arg—Orn
3.9946 22 0.0546 5749 45 | Trp— Kynurenin 3
Pro—Thr
30.0103 21 0.0621 6241 48 | Pro— Pyrrolidinone 3
Hydrozymethyl
Ser—Gly
Thr—Ala
26.0154 25 0.0467 5588 41 | Delta:H(2)C(2) 2
Pro—Ala
46.0059 20 0.0517 4949 44 | 7
17.0239 58 0.0283 7856 30 | Gln—pyro-Glu 26
Ammonia-loss
27.9911 67 0.0279 8947 30 | Formyl 38
Pro— Pyrrolidone
28.0315 24 0.0432 4962 39 | Dimethyl 4
Delta:H(4)C(2)
Ethyl
Ala«<Val
47.9778 101 0.0246 11891 29 Triozidation 69
Table .4

Peptoscope result for the MDF obtained for data set 3. With more than 19 million
mass distances within the MDH range of 0 to 100 Da, this is by far the largest data

set presented in this study.
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preliminary validation results for datasetl.mgf
mass MDF true pairs | MS/MS true pairs | ptm[unimod.org]
44.0259 19528 19089 | Ethanolyl
88.0522 18096 14944 | 2*Ethanolyl
17.026 14212 2688 | Gln—pyro-Glu
61.0523 11463 1330 | ++C2H7ON
71.0258 10267 291 | ++471.02619
4.9554 6280 - | Unknown
26.9988 6128 1428 | Unknown
21.9815 5361 1517 | Cation:Na
83.0972 6245 235 | Unknown
39.0702 5233 725 | Unknown
validation results for dataset2.mgf
mass MDF true pairs | MS/MS true pairs | ptm[unimod.org]
15.9945 191 308 | Ozidation
1.00188 130 - | Dehydro
27.9951 93 121 | Formyl
43.9899 83 63 | Carboxy
validation results for dataset4.mgf
mass MDF true pairs | MS/MS true pairs | ptm[unimod.org]
15.9947 211 190 | Ozidation
9.02967 322 241 | Label:18C(9)
17.026 126 85 | Gin—pyro-Glu
14.0154 87 73 | Methyl
6.96475 63 25 | Unknown
58.0052 67 18 | Carboxymethyl
25.0252 62 25 | Unknown
0.983416 58 - | Deamidated
7.9957 52 33 | Unknown
30.0103 50 15 | Hydroxymethyl

Table .5

Validation of MDF results with a method using MS/MS information. The detected
number of pairs is in the same order of magnitude in most cases confirming the
usefulness of the MDF. For compactness, the table shows only one UniMod abbre-
viation for each mass distance. The MS/MS algorithm cannot detect low mass shift

modifications.
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