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Abstract

We propose a new method for training an ensemble of neural networks. A population of networks is created and maintained
such that more probable networks replicate and less probable networks vanish. Each individual network is updated using random
weight changes. This produces a diversity among the networks which is important for the ensemble prediction using the population.
The method is compared against Bayesian learning for neural networks, Bagging and a simple neural network ensemble, on three
datasets. The results show that the population method can be used as an efficient neural network learning algorithm.

I. I NTRODUCTION

Ensemble learning for neural networks is a subject of active research. It enables an increase in generalization performance by
combining several individual networks trained on the same task. The ensemble approach has been justified both theoretically
[1], [2] and empirically [3]. The creation of an ensemble is often divided into two steps [4], the first being the judicious
creation of the individual ensemble members and the second their appropriate combination to produce the ensemble output.

Combining the outputs is clearly only relevant when they disagree on some or several of the inputs. This insight was
formalized by [2], who showed that the squared error of the ensemble when predicting a single target is equal to the average
squared error of the individual networks, minus the diversity defined as the variance of the individual network outputs. Thus,
to reduce the ensemble error, one tries to increase the diversity (called the “ambiguity” by Krogh and Vedelsby) without
increasing the individual network errors too much.

The simplest method for creating diverse ensemble members is to train each network using randomly initialized weights.
A more elaborate approach is to train the different networks on different subsets of the training set. Examples of this include
Bagging [5] where each training set is created by resampling (with replacement) the original one, with uniform probability.
Boosting [6] also uses resampling of the training set, but here the data points that were poorly classified by the previous
networks receive a higher probability.

There also exist methods that explicitly try to maximize the disagreement among the ensemble members. The ADDEMUP
algorithm [7], which uses genetic algorithms to create accurate members that disagree, was shown to perform well on four
real-world applications. The idea of maximizing the diversity can also be found in the work of Liu [8]. Another approach was
taken by Rosen [9], where an error correlation penalty term was added to the network error function to reduce the correlations
of individual network errors. More developments and good selections of important ensemble research can be found in [4], [10]
and [11].

Since neural network ensembles are easy to use and give better performance than single neural networks models, they are
also used in real-world applications. From the medical domain one can find lung cancer cell identification [12], diagnosis
of breast cancer [13], diagnosis of small round blue cell tumors using gene expression profiling [14] and detection of acute
myocardial infarction using electrocardiograms [15], [16].

Here we present an approach that shares some of its philosophy from evolutionary neural networks [8] and genetic algorithms
[17]. The key idea is to obtain set of disagreeing network members by initially populating different parts of state space. The
method creates apopulation that consists of many neural networks. The network population is trained using Monte Carlo
techniques with a Boltzmann distribution type of statistics. Each network evolves in state space by random weight updates
together with a replication step where the most probable networks replicate into several identical copies. The Boltzmann
distribution is used when finding probable networks. The ensemble output is obtained by simple averaging of the individual
members. Some of the key features of the population method are:
• General approach, where almost any type of model and energy function for the population can be used.
• The training of the population members and the development of the population itself are intimately connected.
The population method was tested against traditional ensemble methods and Bayesian learning for neural network using

hybrid Monte Carlo sampling [18], [19]. The test suite consisted of two real-world classification problems and one function
approximation task. The results showed that our approach can produce neural network ensembles with good predictive
performance, comparable with the other methods.
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This paper is organized as follows: In section 2 we outline thepopulationmethod and in section 3 some of its properties are
discussed and exemplified numerically. Section 4 contains numerical explorations and comparisons. A summary and discussion
is given in section 5.

II. M ETHOD

The purpose is to create a diverse ensemble of networks with good predictive performance. For this purpose, we consider a
population of neural networks (in the order of 100 networks). During each iteration in the training process, networks evolve in
state space by random moves, followed by a replication step where poorly adapted networks vanish and well-adapted networks
replicate. Initially, poorly adapted networks have a relatively large probability to ”survive”. As the training continues, however,
the selections gets stricter as well-adapted networks are favored more and more. The aim is to end up with a population that
populates regions of state space where good networks are found.

First we consider the properties of individual networks; then we describe the population algorithm itself.

A. The ANN models

We consider neural networks in the form of feed-forward multilayer perceptrons (MLP) with one hidden layer and no
direct input-output connections. Let~ωi be the weight vector for each neural network (including thresholds). The hidden unit
activation function is tanh(); the output activation function is linear for regression problems, logistic for binary classification,
and softmax for classification with many classes. For regression, the targets are normalized during training. The inputs are
always normalized.

For each modeli we define an error functionE(i)
err that measures the mismatch between the model and the training data.

Let P denote the number of data points andK the number of outputs in the dataset. Possible choices ofE
(i)
err are:
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wherey
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k (p) is the k:th output of networki using data pointp as input, andtk(p) is the corresponding target. These error

functions are used in regression, multi-value classification and binary classification, respectively.
In addition we introduce a weight elimination term [20], controlled by a tunable parameterλ, to regularize the network.
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The sum for networki runs over the weights of the connectionsc between the layers, but not over the thresholds.
We define the total error, henceforth called the energy, of modeli asEi = E

(i)
err + E

(i)
reg.

B. Outline of the population method

The population method is executed by repeatedly performing steps 1-3 below.

0) Start with N ANN models that all are initialized by random weight vectors~ωi (i = 1, . . . , N). As a time-saving
preparation for the actual population method updates, the models are moved closer to the interesting regions by a rough
back-propagation training for∼5 epochs.

1) Update each~ωi by making a random move:~ωi → ~ωi + ε~αi, where~αi is a vector of length 1 with a random direction and
ε is a small number compared to unity.

2) Introduce a fictitious temperature T which determines the amount of competition between different models. Compute the
energiesEi, Boltzmann factorsBi, average Boltzmann factor〈B〉 and population (fitness) factorsri:

Bi = e−Ei/T (5)

〈B〉 =
1
N

N∑

i=1

Bi (6)

ri =
Bi

〈B〉 = N
e−Ei/T

∑
j e−Ej/T

(7)
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From equation 7 it follows that
∑

i ri = N .
3) Write ri as

ri = Li + δi (8)

where Li ≥ 0 is the integer part ofri and δi is the remainder,0 ≤ δi < 1. PlaceLi replicas of modeli into the
new population. Add one more replica with probabilityδi; this stochastic element among other things gives poorly fitted
models (withri < 1) a chance of surviving. Do this for all models. In average this procedure will maintainN models.
The population size is constrained to be within±4% of the initial size. If the new population size is outside of these
bounds, the proposed population is rejected and a new one is sampled. The±4% interval is wide enough to keep the
rejection rate small, and still narrow enough that the size is roughly constant.

A completion of items 1-3 is called one iteration.
In the first part of the training, the temperature is annealed from the initial valueTi to the final valueTf by multiplying it

each iteration by a constant factor< 1. The step size is also lowered fromεi to εf in the same fashion.
After the annealing, the population continues to evolve according to items 1-3 before the actual network ensemble is sampled.

This sampling is performed by recording all models in the population atS different times, with an interval ofDS iterations
between each such “snapshot”. The default value ofS is 10 to get a relatively dense sampling, whileDS is set so that the
sampling is performed over the last two-thirds of the post-annealing phase. The final ensemble output〈yk(p)〉 is calculated
simply by averaging over all the network outputs in the ensemble.

C. Similar Approaches

The proposed method is to some extent similar to genetic algorithms [17]. Genetic algorithms evolve a population of models,
measure their performance by an objective functionfi and calculate the fitness asfi/〈f〉, whereupon a number of replicas
are stochastically created in proportion to the fitness value. This approach is shared with the population method, for which
fi = Bi = e−Ei/T . However, unlike genetic algorithms, the population method does not require its models to be represented
as binary strings, and does not apply crossover operators to combine different models. In this respect, the population method
is more similar to evolutionary programming.

Evolutionary programming is used by [8] to evolve a neural network ensemble of sizeN . In each iteration, a few extra
networks are added by replicating some networks chosen with uniform probability, whereupon all new models make a rather
large random move followed by back-propagation training. The training uses a cost term that explicitly favors diversity (cf.
sections III-B.1 and V). Each iteration ends by pruning the the population to theN fittest networks. Though reminiscent of the
population method, our method is different in the replication procedure and in the weight updates, which are random rather
than gradient-based; the training is essentially performed by the replication step itself.

Another major difference lies in the annealed temperature parameterT that the fitness is based upon. This concept of
annealing a temperature and considering a Boltzmann factore−E/T is also used in simulated annealing [21], but in the latter
method a new state is proposed and then accepted or rejected based on the difference in energy; a rejection means that the
system returns to its previous state. In the population method, the new states are never rejected in the sense that the networks
are returned to the state they had before the random move; rather the temperature is used in the selection between many such
updated models.

III. PROPERTIES OF THE METHOD

The properties and performance of the algorithm were evaluated using three test sets. TheRobot Armdata set [22], [18] is
an artificial regression problem, in which the outputs are simple trigonometric functions of the inputs, with a small Gaussian
noise term added. ThePima Indians Diabetes Database[23] andMyocardial Scintigramdata set [24] are medical classification
problems with binary targets. The sizes of these data sets are specified in the Experiments section.

A. Correlation over time

It is important during all phases of the population learning that the ensemble of networks evolves in state space. Both in
the beginning of the learning, in order to obtain well-tuned individual networks, and at the end where we want a diverse
enough ensemble. To increase our confidence that the ensemble is evolving considerably, we find it suitable to measure that
the population is uncorrelated with its state at a previous time.

To this end, we decided to study the average absolute activation (output) of the hidden units,〈|H|〉. To our knowledge,
this measure has not been studied by other authors. The average is formed both with respect to the hidden units and the data
points in the training set. Averaging over the test set produces a very similar〈|H|〉. Since the networks continually vanish and
replicate, it seemed impractical to study the autocorrelation of individual networks; rather, we consider the average over all
the networks in the population.

Our conjecture is that〈|H|〉 will reflect the movement of our population in state space. A significantly fluctuating〈|H|〉
indicates that the population is evolving rather than being stuck in a local minimum. However, the fluctuation of〈|H|〉 cannot
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be used as a rule of thumb to indicate that the population has reached the desired distribution; even when we are training with
less than optimal parameters, experiencing over-training etc,〈|H|〉 still is usually fluctuating.

The qualitative behavior of〈|H|〉 depends on the data set studied, and to some extent on the parameters chosen for training.
〈|H|〉 generally starts at≈ 0.5 and then rises initially. When there is regularization (λ 6= 0), as for the Pima (Figure 1b) and
Scintigram (Figure 1c) data sets,〈|H|〉 then decreases considerably.

When the annealing is finished, the algorithm is continued, to allow for a detailed exploration. At this stage, withT and ε
being low, the population cannot be expected to cross high energy barriers or travel long distances in state space. However,
when training with the Pima and Scintigram data sets, the population is still mobile enough that〈|H|〉 fluctuates significantly
– Figure 1b and 1c. Interestingly, this is true even though the energy for the Pima data set is no longer changing in this phase
(cf. Figure 4b).

Only for the Robot Arm, where the final values ofT and ε are exceptionally low, are the fluctuations of〈|H|〉 very small
in the post-annealing phase (Figure 1a). These extreme parameters are required to get a fine-tuned answer for this low-noise
problem.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000

<
|H

|>

iteration

(a)

Robot

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000

iteration

(b)

Pima

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000

iteration

(c)

Scintigram

Fig. 1. The average absolute activation of the hidden units. (a) Robot Arm, (b) Pima and (c) Scintigram data sets. The vertical dashed line represents the
iteration where the annealing was finished. (In order to show the long-term behavior of the hidden activation, these plots show a larger number of iterations
than what was actually used when measuring the performance.)

As a closing remark regarding〈|H|〉, it was noted that our chosen method of starting from a relatively largeε and then
lowering ε gradually makes〈|H|〉 rise more quickly to its final region, compared to using a small value ofε throughout. (A
large constantε cannot be used, as the final fine-tuning requires a small value.) This indicates that a large step size in the
beginning of the training indeed makes the population explore larger regions in state space and reach the desired regions more
quickly, as was the intention.

1) Autocorrelation as a stopping criterion:The question arises of how to determine when (and if) the ensemble has converged
to the desired distribution. A stopping criterion, expressed in terms of autocorrelations of relevant model quantities, would
certainly be desirable. An example of such a criterion would be to sample for 100 times the integrated correlation lengthτ ,
defined as

τ = 1 + 2
∞∑

s=1

ρ(s) (9)

Here,ρ(s) is the autocorrelation of the studied quantityξ(t) at lags:

ρ(s) =
E [(ξ(t)− E[ξ]) (ξ(t− s)− E[ξ])]

V ar[ξ]
, (10)

wheret is the iteration number.
We made comparative runs with the Markov Chain Monte Carlo (MCMC) method implemented by Neal [18], [19], and

drew the conclusion that for this algorithm as for our own, such a criterion is not reliable.
Neal’s method uses Hamiltonian trajectories, discretized into a number of “leapfrog” steps, to sample from the Bayesian

posterior distribution of network weights. These trajectories are alternated with Gibbs sampling of hyper-parameters controlling
the prior weight distributions. In experiments using the Pima dataset, the smallest correlation lengths of hyper-parameters
(measured in units of CPU minutes) were obtained for trajectories of 5 leapfrog steps. If the prescribed aim is to quickly
sample for 100 times the correlation length, this would then be the ideal choice. But much longer trajectories are in fact
needed to efficiently explore weight space; Neal uses trajectories in the order of 100–10000 steps. Thus we see that the
proposed prescription is not reliable. Other authors [25] have performed other types of tests on Neal’s method, and were also
unable to establish convergence.
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Robot Pima Scintigram
Population method 0.00055 0.0012 0.0072
MCMC method 0.00049 0.0082 0.021
Bagging ensemble — 0.0060 0.069
Bagging, unregularized 0.0011 0.13 0.093
Simple ensemble 0.0015 0.00071 0.00002

TABLE I

THE AVERAGE DIVERSITY D̄ OF THE ENSEMBLES PRODUCED BY THE STUDIED METHODS.

For the Population method, the correlation length of〈|H|〉 has the same order of magnitude as the total number of iterations
found to be appropriate by cross-validation. This being so, it seems impossible in this case also to make a prescription to
sample for a certain number of correlation lengths.

In conclusion, given the absence of such a measure of convergence for both these methods, the required number of iterations
has to be determined by trial and error and self-consistency checks using cross-validation.

B. Correlation between networks at a given time, and in the final committee

1) Diversity: It is important that the ensemble members disagree in their predictions, if anything is to be gained by combining
them. A measure of the disagreement is the ensemble diversityd̄(p) on inputp, defined as

d̄(p) =
1
N

N∑

i=1

(
y(i)(p)− 〈y(p)〉

)2

(11)

The diversity is just the variance of the individual network outputs. (For the moment we’re considering the case of one output
to keep notation simple, but the extension to many outputs is trivial.) Letε̄(p) denote the average of the individual network
errors on inputp, andeerr(p) the squared error of the ensemble:

ε̄(p) =
1
N

N∑

i=1

(
y(i)(p)− t(p)

)2

(12)

eerr(p) = (〈y(p)〉 − t(p))2 (13)

Then, as demonstrated in [2],
eerr(p) = ε̄(p)− d̄(p) (14)

Letting Eerr, Ē and D̄ be the averages ofeerr, ε̄ and d̄ over the input distribution, we obtain

Eerr = Ē − D̄ (15)

In words, the mean square ensemble error is equal to the average squared error of the individual networks minus the average
diversity. Thus, to get a small ensemble error we want the diversity to be large and the individual errors to be small. There
is a trade-off; modifying an algorithm to increase the diversity will reduce the ensemble error only if the increase in diversity
is larger than the increase in the individual errors. The average diversityD̄ is an interesting measure of where the operation
of an algorithm is on this scale, and the diversities of the population method along with the diversities of the other studied
methods are given in Table I.

Some algorithms use an explicit mechanism for increasing the diversity; e.g. Bagging trains each network on a different subset
of the training set. The population method does not use any explicit method for increasing diversity, and produces ensembles
that are less diverse than Bagging, as is evident from Table I. However, there is not a one-to-one correspondence between
diversity and good performance; even though the Bagging method produces more diverse ensembles than the population method
for all three datasets, the predictive performance of the population method is higher (cf. section IV).

2) Internal correlation: Consider the vector of the activation of the hidden units, for a certain network and data point. We
define the hidden activation distance between two networks to be the average Euclidian distance between the hidden activation
vectors of these two networks, with the average being formed over the training set. This measure gives an indication of how
different two network models are internally; cf. [26].

The hidden activation distance for the final population ensemble, for our choice of architecture and data sets, is typically in
the range [0,0.2], whereas for independently trained and for randomly initialized networks it is typically in the range [0.5,3].
Thus, we see that all networks end up in the same approximate region of state space. One possible explanation is that, at some
point in the annealing procedure, the group of networks in one region have happened to become significantly better adapted
than in other regions, and the other groups vanish. Furthermore, even if the networks in each region are equally well adapted,
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the number of networks in any given group performs a random walk because of the randomness in the replication, and once
a group reaches zero members it is gone.

What does this mean? Remember that there are numerous symmetries in neural networks – under permutation of the hidden
unit indexes, and under sign change of all weights going into and out of one hidden unit. Because of this, there are many
mutually distant regions in weight space that are symmetric copies of each other and implement essentially the same solution.
Nothing is gained by including networks from many different symmetric regions; it is enough to explore one such region
sufficiently. Thus, the fact that all models come from the same approximate region is not an essential disadvantage; they are
still different enough that the outputs of the different models are significantly diverse (section III-B.1), which is important for
ensemble performance.

The internal distance within the simple and Bagging ensembles is of course large, because these individually trained and
randomly initialized networks have equal probability of ending up in either of the symmetric regions. Even though the internal
distance is large, however, the diversity for the simple ensemble is small (Table I) and the predictive performance of the simple
and Bagging ensembles is worse than for the Population method (section IV).

The internal distance between the networks in the MCMC ensemble is also large, because the Hamiltonian trajectories of
Hybrid Monte Carlo travel long distances in state space. However, because many of the far-away regions are just symmetric
copies of each other, visiting many of them is not really essential for good prediction. Doing so might still be an advantage,
as an algorithm that only explores one symmetry-region runs the risk of exploring too small a part of that region, and moving
between regions could protect against this problem. This is however at the cost of CPU-intensive calculations of the Hamiltonian
equations of motion.

Neal rejects random updates in favor of hybrid Monte Carlo, arguing that random walk is an unsystematic and inefficient
way of exploring state space [18]. This is indeed true if but a single network is used, but in the population algorithm the
vanishing and replication of networks in effect moves poorly adapted networks long distances to the well-adapted ones where
they continue their search, thus making the exploration systematic.

C. Age and Replication histograms

Each model has an age, defined as follows: in the beginning of the algorithm, all models have age 0. When a number of
replicas is created from a model of ageA, the first of these replicas has ageA + 1 and the rest (if any) have age 1. Figure 2
shows a histogram of how old the models were when they vanished (i.e. were replicated zero times), during a window of
iterations at different stages of the algorithm. Figure 3 correspondingly shows a histogram of how many replicas were created
from each model.
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Fig. 2. The age distribution of the models when they vanish, for the Robot Arm data set. (a) First 300 iterations. The competition is low and some models
grow very old. (b) Last 10 iterations; the competition is strong.

At the beginning of the procedure,T is high. Our way of normalizing the targets (for regression) and the error means
that the approximate magnitude of the initial energy is the same for all data sets, and the default valueTi = 3.0 is usually
appropriate. A highT implies that allri ≈ 1, and thus most models are replicated exactly once every iteration, as can be seen
in Figure 3a. This in turn means that there are many models that reach a high age. The typical lifetime of a model is 10–30
as its population factor fluctuates around unity, and some models survive for as much as 100 iterations.

As T is lowered, the tail of the replication histogram grows longer and longer as the best models are more and more favored.
When the annealing is almost finished,T is very low which means that the competition is strong. The energies of the models
lie within a rather narrow band; a rather small change in energy is enough to give a model a tiny or huge population factor.
The energy is still decreasing, i.e. often there is a model that finds a better configuration than what’s been achieved before.
This model is then replicated a very large number of times – Figure 3b.
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Fig. 3. Replication histograms, showing the number of replicas produced by the replicating networks, for the Robot Arm data set. (a) Start of training. (b)
End of annealing; the energy is still decreasing. (c) End of training.

Robot Pima Scintigram
Number of hidden units 10 8 8
Population size 500 100 100
Number of annealing iterations 13000 2000 5000
Total number of iterations 16000 2600 5500
Weight elimination parameter 0 5.0 20.0
Initial stepsize 0.1 0.5 0.5
Final stepsize 0.035 0.07 0.06
Initial temperature 0.08 3.0 3.0
Final temperature 0.00006 0.001 0.001

TABLE II

TRAINING PARAMETERS USED FOR THEPOPULATION METHOD.

After the annealing is finished, the energy eventually stops decreasing, and the population spreads out over the best regions
found. The competition is still strong, but as there is now a fair number of networks that have reached very low and similar
energies, no network is favored greatly over the others and the maximum number of replicas is moderate – Figure 3c. Remember
that each individual model performs a random walk, and it might easily move to a configuration with significantly higher energy,
after which the model is likely to vanish. Thus, we cannot expect models to become all that old. This can be seen in Figure 2b,
which shows the ages during the last 10 iterations.

The final temperatureTf needed to archive good performance is problem dependent; there is a trade-off between forcing
all the models to have very low energies by setting a lowTf , and increasing the diversity by settingTf higher. As a rule of
thumb we usedTf = 10−3.

IV. EXPERIMENTS

To evaluate the performance of the Population algorithm we compared against the MCMC method by Neal [18], [19],
Bagging [5] and a simple averaging ensemble, formed by training 100 MLPs on the full training set using back-propagation
with random weight initialization. We also used 100 networks for the Bagging ensemble.

In preliminary runs, parameters were chosen using trial and error based on three-fold cross-validation on the training set.
Reasonable effort was used in finding suitable parameters to minimize the error and CPU consumption, but the purpose here
is only to give an indication of the merits of the methods, not to make a rigorous test of the general performance. The chosen
parameters for the Population method are specified in Table II. The parameters used for the other methods are not specified
here, but the number of hidden units used for a given data set was the same for all four methods. Other values for the number
of hidden units were tested for the four methods, but this did not increase predictive performance. Furthermore, much larger
ensemble sizes were tried for all methods, without any increase in performance. Apart from the Robot Arm data set that
requires unusual parameters, the ones specified in Table II will also serve as an appropriate set of initial parameters for other
problems. However, parameters such as the one for the weight elimination always requires tuning for each specific data set.

For the classification tasks, the performance is given in terms of area under the receiver operating characteristic (ROC) curve.
The ROC curve displays diagnostic accuracy expressed in terms of sensitivity against 1 - specificity at all possible output
threshold values. The sensitivity is the fraction of correctly classified ”one” cases and the specificity is the corresponding
fraction for the ”zero” cases. The area under the ROC curve is a commonly used performance measure with unity (100%)
being a perfect classifier and the value 0.5 being equivalent to random guessing. The total performance, i.e. the fraction of
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Robot Pima Scintigram
Problem type Regression Classification Classification
Number of inputs 2 7 30
Number of targets 2 1 1
Size of training set 200 200 153
Size of test set 200 332 76

Mean Square Error ROC area (%) Total perf. (%) ROC area (%) Total perf. (%)
Population method 0.00308(11) 86.51(4) 80.2(2) 80.8(1.0) 75.5(1.3)
MCMC method 0.00279(2) 86.30(13) 80.1(3) 80.8(7) 75.1(1.2)
Bagging ensemble — 86.18(7) 79.3(2) 78.4(7) 71.7(1.3)
Bagging, unregularized 0.00335(4) 83.52(16) 77.8(6) 77.2(4) 71.3(1.4)
Simple ensemble 0.00367(7) 86.11(4) 79.6(4) 75.5(1) 75.0(0)

CPU minutes CPU minutes CPU minutes
Population method 435 19 93
MCMC method 58 79 386
Bagging ensemble 3.3 2.9 4.6
Simple ensemble 3.8 2.8 3.2

TABLE III

PROPERTIES OF THE DATA SETS(TOP); TEST RESULTS(MIDDLE ), AND CPU CONSUMPTION(BOTTOM). THE STANDARD DEVIATIONS, CORRESPONDING

TO THE ONE OR TWO LAST DIGITS OF THE TEST RESULTS, ARE GIVEN WITHIN PARENTHESES.

correctly classified examples in the test set, is also given at the threshold level that maximized the fraction of correctly classified
examples during cross-validation. For the regression task, performance is given in terms of the mean square error (equation 1).

A. Test results

A final training was made using the whole training set, and the performance was computed using the test set. In each case,
ten runs with identical parameters were started. The results were stable; the performances with standard deviations are as
specified in Table III. All runs were made on a 800 MHz Pentium III computer running Linux.

The Robot Arm is an artificial data set with very low noise. When starting the population updates from random configurations
with high energies, the population often did not reach the lowest energies during the annealing. Therefore a very long initial
back-propagation training was used, in order to start with a low energy. The initial temperature was also low; otherwise there
would have been practically no competition between the networks as they are randomly updated, and the energy would have
increased rapidly. The fine-tuning required of the networks for this problem necessitated an extremely low final temperature,
which means that the population is relatively fixed after the annealing is finished, with the hidden activation〈|H|〉 almost
constant (Figure 1a). The energy also settles and fluctuates within a rather narrow interval; Figure 4a. — Even though these
unusual parameters were used, the MCMC method achieves a better result in this case.

The Pima dataset is a real-world problem requiring less extreme parameters. As can be seen in Figure 4b, the training and
test errors settle after the annealing and stay practically constant. This does not mean that the population is stuck in a local
minimum, however; unlike for the Robot Arm,〈|H|〉 is fluctuating (Figure 1b), indicating that the population is changing
significantly. The performance for the Population and MCMC method is practically the same.

When cross-validating with the Scintigram dataset, there was often over-training; the validation error decreased initially
but often subsequently increased; cf. Figure 4c. The validation curve could be made to level out by increasing the weight
elimination parameterλ, but this resulted in worse predictive performance. This problem was solved by early stopping. An
overall validation curve was created by averaging over the validation curves of several cross-validation runs with different
dataset partitions; the best region of this curve was found to be the interval 1900–5500. In the final run, this was the interval
over which the ensemble was sampled. Again, the performance of the Population and MCMC method is the same.

The tested ensemble methods used a non-zero regularization term for the two classification problems, as a result of the
cross-validation process. As a reference we have included large unregularized ensembles (500 networks) created with Bagging.
As can be seen in Table III, the performance for the unregularized Bagging ensembles on the classification tasks were worse
than for the regularized ones.

In all, the results for the Population method and Neal’s Bayesian software were comparable for the real-world classification
tasks, whereas Neal’s software was better than the Population method on the artificial Robot Arm data set. The Population
method was however faster than the MCMC method on the classification problems. Compared to the two other ensemble
methods, Bagging and the simple ANN ensemble, the Population method was better, at least for the Robot and the Scintigram
datasets. Bagging and the simple ANN ensemble were on the other hand the overall fastest methods.

V. SUMMARY AND DISCUSSION

We have presented a new method for training an ensemble of neural networks. A population of networks is created and
maintained such that probable networks replicates and less probable networks vanish. The Boltzmann distribution is used
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Fig. 4. Training curves: (a) Robot Arm. (b) Pima. (c) Scintigram. These training curves show more iterations than were actually used when measuring
performance, as in Figure 1.

when defining the probability of a network. The “temperature” appearing in the Boltzmann distribution signifies the level of
competition among the networks, where a high temperature allows for networks that have both small and large errors. A small
temperature, on the other hand, selects only well adapted networks. The annealing present in the population method is used
to transform an initial (random) population to a set of fine-tuned networks. This population then continues to evolve in state
space. The whole procedure creates the necessary diversity among the individual members that is important for the ensemble
itself.

The method is simple in the sense that is does not require any complicated algorithmic implementations. Furthermore, no
gradient information, with respect to the error function, is used when updating individual networks, which makes the method
fast even when maintaining a population of a hundred networks or more.

We tried using an explicit mechanism for increasing the diversity of the population, by introducing a term in the energy
equal to the diversitȳD (equation 11) times a negative, tunable parameter. Such a term has been used by other authors when
training new networks that are to be added to an existing ensemble [8], or when selecting the best networks trained by other
means [7]. For our method, this term did not improve the predictive performance for any of the studied datasets. The only
noticeable non-detrimental effect was on the Pima dataset, where moderate values of the tunable parameter resulted in doubled
average diversityD̄ at unchanged ROC area. In conclusion, nothing is gained in the population algorithm by trying to push
the trade-off between diversity and individual network errors in this way.

To summarize, the algorithm has been tested on three datasets and the results from the experiments section indeed show
that the population method can be used as an efficient neural network learning algorithm.
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