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Summary

Computer-aided interpretation of electrocardiograms

(ECGs) is widespread but many physicians hesitate to
rely on the computer, because the advice is presented

without information about the con®dence of the

advice. The purpose of this work was to develop a
method to validate the advice of a computer by

estimating the error of an arti®cial neural network

output. A total of 1249 ECGs, recorded with
computerized electrocardiographs, on patients who

had undergone diagnostic cardiac catheterization

were studied. The material consisted of two groups,
414 patients with and 835 without anterior myocar-

dial infarction. The material was randomly divided

into three data sets. The ®rst set was used to train an
arti®cial neural network for the diagnosis of anterior

infarction. The second data set was used to calculate

the error of the network outputs. The last data set
was used to test the network performance and to

estimate the error of the network outputs. The

performance of the neural network, measured as the
area under the receiver operating characteristic

(ROC) curve, was 0á887 (0á845±0á922). The 25% test

ECGs with the lowest error estimates had an area
under the ROC curve as high as 0á995 (0á982±1á000),

i.e. almost all of these ECGs were correctly classi®ed.

Neural networks can therefore be trained to diagnose
myocardial infarction and to signal when the advice is

given with great con®dence or when it should be

considered more carefully. This method increases the
possibility that arti®cial neural networks will be

accepted as reliable decision support systems in

clinical practice.

Keywords: computer-assisted electrocardiography,

diagnosis, myocardial infarction, neural networks
(computer).

Introduction

Computer-aided interpretation of electrocardiograms

(ECGs) was ®rst studied by Pipberger et al. (1961). In
the early 1980s, the ®rst commercially available

programs for the analysis of the 12-lead ECG were

presented by Marquette Electronics Inc. and soon
thereafter by Siemens Elema AB. Three different

interpretation techniques have been used in interpre-

tation programs. In the beginning, statistical methods
were most commonly used. During the last two

decades, a method using ECG criteria translated into

computer programs has become the most used. This
method is called a `deterministic' method. During the

1990s, the third technique, arti®cial neural networks,

has been studied for ECG interpretation. Arti®cial
neural networks achieves their performance by learn-

ing from examples. HedeÂn et al. (1996a, 1997) have

shown that arti®cial neural networks usually perform
better than deterministic methods and as well as

experienced physicians. Arti®cial neural networks

have recently been incorporated in a commercially
available ECG interpretation program.

Today, computer-aided interpretation of ECGs is

widespread. An estimated 300 million ECGs are
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recorded each year, and most of these are interpreted

by computerized electrocardiographs. These comput-

er interpretations can support physicians in situations
where more experienced colleagues are not present.

However, many physicians do not rely upon com-

puter interpretations even though the computer has
proved to be highly accurate. The best ECG inter-

pretation programs perform almost as well as human

experts (Willems et al., 1991). One reason for the
hesitation is probably that the computerized electro-

cardiographs present advice without information

about the con®dence of the advice. In contrast, a
colleague can give advice with different degrees of

con®dence ± `this is a typical pattern of myocardial
infarction' or `this is an unusual ECG pattern which I

believe is due to left ventricular hypertrophy'. This

type of information makes it easier to rely on the
colleague than the computer.

Interpretation programs of today present probabil-

ity estimates, for example `probable left ventricular
hypertrophy' and `possible myocardial infarction'.

These probability estimates describe the uncertainty

that arises when there is overlap between different
diagnostic groups. For example, ECGs with small R

waves in the leads V2±V4 can be found both in normal

subjects and in patients with anterior myocardial
infarction. Therefore, a statement such as `possible

anterior myocardial infarction' is justi®ed even

though this is a very common ECG pattern.
The problem is that the interpretation programs

present dogmatic advice for unusual ECG patterns.

This con®dence problem, which is addressed in this
study, can be illustrated by Fig. 1. The ®rst ECG

(Fig. 1a) represents a common pattern among

patients with healed anterior myocardial infarction.
There are both Q waves and ST±T changes in many

of the anterior leads. In the second ECG, the Q waves

in leads V2 and V3, and the small R wave in lead V4

are accompanied by ST±T patterns not typical for

anterior myocardial infarction (Fig. 1b). The ECG

would ful®l most Q-wave criteria for anterior myo-
cardial infarction but the ECG appearance could also

be due to left ventricular hypertrophy, for example.

Therefore, a less dogmatic interpretation than `def-
inite anterior myocardial infarction', would be justi-

®ed.

A reliable computerized electrocardiograph should
present interpretations with probability estimates but

also signal when the advice is given with great

con®dence or when it should be considered more

carefully. It is well known that arti®cial neural
networks can present probability estimates given that

a number of conditions are ful®lled (Richard &

Lippman, 1991). The most important requirement is
that the training cases are good representatives of the

actual use or test conditions. The problem is that such

a test ECG may be different from the ECGs used in
the training phase. In other words, even though

network outputs in principle have probabilistic inter-

pretations, in reality this may not be the case due to
mismatch between training and test sets. For this

reason, one often needs to augment the procedure
with some estimate of how close to the training set a

test data point is located.

The purpose of this study was to develop a
method to validate the advice of a computer by

estimating the error of an arti®cial neural network

output. The method, which is of a general nature,
was applied in an electrocardiographic classi®cation

task.

The type of con®dence assessment presented in this
study is different from the probability estimates

presented by the interpretation programs of today.

In order to illustrate this difference, the probability
estimates of a neural network and a widely used set of

rule-based criteria were also studied.

Methods

Study population

A total of 1249 ECGs from the Bowman Gray
School of Medicine Data Base (Pahlm et al., 1991)

recorded on patients who had undergone diagnostic

cardiac catheterization were studied. The ECGs
were used to train and test an arti®cial neural

network for the diagnosis of healed anterior myo-

cardial infarction. Anterior myocardial infarction
was de®ned by the presence of 75% diameter

stenosis of the left main coronary artery, the left

anterior descending artery or its major diagonals,
and akinesia or dyskinesia of the anterior±superior

wall on the right anterior oblique ventriculogram.

Patients with normal coronary arteries, normal
contrast left ventriculogram, no evidence of valve

dysfunction or congenital heart disease, ejection
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fraction 50%, and an overall study evaluation of
`normal' were classi®ed as `cath normal'. Inferior

myocardial infarction was de®ned by the presence

of 75% diameter stenosis of the right coronary
artery, and akinesia or dyskinesia of the inferior

wall on the right anterior oblique ventriculogram.

Figure 1 (a) One ECG from the infarct group and (b, c) two ECGs from the control group. The network outputs for
the ECGs were 0á995, 0á979 and 0á981, respectively. The error estimate measures were low for ECGs (a) and (c), and high for
ECG (b).

A con®dent decision support system � H. Holst et al.
............................................................................................................................................................................................................................................................................................................................

412 Clinical Physiology 19, 5, 410±418 · Ó 1999 Blackwell Science Ltd



The differentiation of interest in the clinical

situation is often whether a diagnosis, for example

anterior myocardial infarction, is present or not
rather than differentiation between the diagnosis

and normal. Therefore, ECGs recorded on patients

with anterior myocardial infarction, singly or in
combination with inferior myocardial infarction, were

denoted the anterior infarct group, while cath nor-

mals and patients with single inferior myocardial
infarction comprised the control group. In both the

anterior infarct group and the control group, ECG

patterns were found which indicated other types of
heart disease, for example left ventricular hypertro-

phy. However, only the diagnosis of anterior myo-
cardial infarct was considered in the present study.

The material was randomly divided into three

groups, one each for the training, validation and test
sessions described below. The numbers of ECGs in

the different groups are presented in Table 1.

The 12-lead ECGs were recorded using comput-
erized electrocardiographs. The recording technique

of the electrocardiographs was in accordance with

AHA speci®cations. The frequency range was 0á05±
100 Hz and noise reduction was performed by time

coherent averaging. Averaged complexes were trans-

ferred to a computer and stored for further analysis.
Measurements of amplitudes and durations of the

electrocardiographic complexes were performed

using an analysis program developed at our depart-
ment. The de®nitions of measurements follow the

recommendations of the CSE Working Party (1985).

Conventional ECG criteria for the diagnosis of
anterior myocardial infarction use the leads V2±V4.

Therefore, the following automated measurements

from leads V2±V4 were used as inputs to the arti®cial
neural network: Q, R, and S amplitudes, Q and R

durations, and three amplitudes within the ST±T

segment. The interval between the ST junction and
the end of the T wave was divided into six segments of

equal duration and the amplitudes at the end of

segments 1, 3 and 5 were used as network inputs.

Training

The 432 ECGs of the training set were used in two

separate procedures. One was to train an arti®cial
neural network and the other was to create a parti-

tioning of the multi-dimensional data space in which

any single ECG is represented by a single data point.
An arti®cial neural network with a multi-layer

perceptron architecture (Rumelhart & McClelland,

1986) was used. A more general description of neural
networks can be found elsewhere (Cross et al., 1995).

The neural network consisted of one input layer, one

hidden layer, and one output layer. There were 24
units in the input layer, one for each of the input

variables, i.e. eight measurements from each of three

leads. The hidden layer contained ®ve units. The
output layer contained a single unit that encoded

whether the ECG was classi®ed as anterior myocar-

dial infarction or not. During a training process, the
connection weights between the units were adjusted

using the Langevin extension of the back-propagation

updating algorithm (RoÈgnvaldsson, 1994). The learn-
ing rate was decreased geometrically every epoch

from a start value of 0á5 to an end value of 0á1. The

momentum was set to 0á7. The network training was
stopped when the error in the training set reached a

pre-de®ned error threshold in order to avoid `over-
training'. This error threshold was decided using a

threefold cross validation procedure. The network

weights were frozen after the training process. All
calculations were performed using the JETNET 3á0
package (Peterson et al., 1994).

The partitioning of the multi-dimensional data
space was performed using a modi®ed k-means

clustering technique (MacQueen, 1967). The training

ECGs were divided into groups, or clusters, such that
ECGs with similar appearance were assigned to the

same cluster. In this application, a 24-dimensional

data space was studied, where each of the 24 ECG
measurements is one dimension. A cluster is charac-

terized by a reference point, the cluster centre, and

each data point (training ECG) is assigned to the
closest cluster centre. The clustering procedure was

performed in the following way. First, a number of

cluster centres were assigned random positions in the
24-dimensional data space. Thereafter, the positions

of the cluster centres were adjusted in an iterative

process in order to minimize the squared distance

Table 1 Study population.

Training Validation Test Total

Anterior infarct group 145 129 140 414

Control group 287 271 277 835

Total number of patients 432 400 417 1249
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between data points and cluster centres. It should be

noted that the number of ECGs assigned to the

different clusters changes during the iterative process.
The result of the clustering procedure, the partition-

ing of the data space, is embedded in the ®nal

positions of the cluster centres.

Validation

The 400 ECGs of the validation set were processed

through the network and a validation error, i.e. the

difference between the network output and the desired
output, was calculated for each case. Furthermore, each

case in the validation set was assigned to the closest
cluster centre. The individual validation errors for all

cases assigned to the same cluster were used to calculate

a mean validation error for that particular cluster.
Hence, the result of this session was a validation error

for each of the clusters, i.e. an estimation of how

reliable the network outputs were for a group of similar
ECGs. A more detailed description of the validation

session is presented in the Appendix.

The estimation of a validation error for a cluster
must be based on a fair number of individual cases. If

less than 20 validation cases were assigned to one of

the clusters, the clustering procedure in the training
session was repeated with a smaller number of

clusters. When seven clusters were used in the

electrocardiographic application, the smallest number
of validation cases assigned to a single cluster was 21.

Test

In the test session, 417 ECGs were processed through

the network and the resulting output values were used
to assess the performance of the network. The output

values of the network were in the range from 0 to 1.

The desired output was 0 for a control ECG and 1 for
an anterior myocardial infarction. A threshold in this

interval was used, above which all values were regarded

as consistent with anterior myocardial infarction. By
varying this threshold between 0 and 1, a receiver

operating characteristic (ROC) curve was obtained.

Areas under the ROC curves were calculated as
measures of performance. The 95% con®dence limits

of the areas were estimated by a bootstrap technique.

An error estimate was also computed for each case
in the test set. The distance from a test case to each

cluster centre and the validation error of the same

cluster were taken into account in these calculations.

The validation error of a cluster centre close to the
test case in¯uenced the error estimate more than that

of a cluster centre at a longer distance. A low error

estimate indicates that the network is presenting
advice with great con®dence whereas a high error

estimate indicates that the network output should be

considered more carefully.

Conventional criteria

A set of rule-based criteria for anterior myocardial

infarction was adopted from the Glasgow Royal
In®rmary (GRI) program. These criteria are

described in the textbook `Comprehensive Electro-

cardiology' (Macfarlane & Lawrie, 1989). This widely
used program has been evaluated in a large European

study (Willems et al., 1991). The program consists of

three different sets of criteria for the diagnosis of
anterior myocardial infarction. By applying these

criteria, each ECG was classi®ed into one of the

following four groups or probability estimates:
· `anterior myocardial infarction'

· `probable anterior myocardial infarction'

· `possible anterior myocardial infarction'
· `no anterior myocardial infarction'

The criteria were based on automated measurements

from the leads V2±V4, and were applied to the 417
ECGs of the test set.

Results

The network outputs and error estimates of the 417

test ECGs are presented in Fig. 2. High error
estimates were found for output values in the range

0±1. Only ECGs with network outputs very close to

0 or 1 had low error estimates. The performance of
the neural network in the test set is presented as

ROC curves in Fig. 3. The area under the curve was

0á887 (0á845±0á922). The test ECGs with the lowest
error estimates were also studied separately. An ROC

curve was calculated from the 25% test ECGs

(n � 104) with lowest error estimates (Fig. 2). The
area under this ROC curve was as high as 0á995

(0á982±1á000), i.e. almost all of these ECGs were

correctly classi®ed. The area under the correspond-
ing ROC curve for the remaining 75% (n � 313)

A con®dent decision support system � H. Holst et al.
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ECGs was 0á796 (0á728±0á858). Thus the error
estimates can be used to identify a subgroup of

correctly classi®ed test ECGs.
The 25% test ECGs with network outputs closest to

0 or 1 (0á00±0á01 or 0á99±1á00), i.e. those with very low

or very high probability for infarction, produced an
ROC curve with an area of 0á928 (0á853±0á981). This

area was larger than that for the total test set but smaller

than that for the ECGs with lowest error estimates,
indicating that the con®dence for this subgroup is only

slightly higher than that for all test ECGs.

The conventional criteria were applied to the 417
test ECGs with the following results. A total of 57

ECGs of the anterior infarct group were classi®ed as

anterior myocardial infarction, while 24 ECGs were
classi®ed as either possible or probable anterior

myocardial infarction and the remaining 59 ECGs

were false-negative. In the control group, four ECGs

were falsely classi®ed as anterior myocardial infarc-
tion, while ®ve ECGs were falsely classi®ed as either

possible or probable anterior myocardial infarction.
A true negative classi®cation was found in the

remaining 268 control ECGs. The total accuracy

was calculated as 83á7% (57 + 24 + 268)/417 in the
total test set. When only test ECGs with highest or

lowest probability estimates for anterior myocardial

infarction, i.e. the ECGs classi®ed as possible or
probable infarction, were excluded, the total accuracy

was 83á8% (57 + 268)/388. Thus, it was not possible

to identify a subgroup of correctly classi®ed ECGs by
using the conventional criteria classi®cations.

Fig. 1(a) illustrates a correctly classi®ed infarct

ECG (high network output) with the lowest error
estimates of all test ECGs. The control ECG shown

in Fig. 1(b) was falsely classi®ed as infarct by the

network (high network output). This ECG also

Figure 2 Network outputs and error estimates from eqn 4 (see Appendix) of the 417 test ECGs. The broken line shows
where the limit between the 25% test ECGs with the lowest error estimate and the 75% test ECGs with the highest error
estimate is located. A low error estimate was found in combination with network outputs close to 0 or 1.
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ful®lled the conventional Q-wave criteria. The error
estimate for this example was high, indicating that the

advice from the neural network should be considered
more carefully. These two ECGs illustrate the

advantage of the con®dence method. One of the

104 test ECGs with low error estimate was falsely
classi®ed by the network (Fig. 1c). This ECG was

interpreted as an anterior infarction by the network

(high network output) but according to the gold
standard the ECG was recorded on a patient with

isolated inferior myocardial infarction.

Discussion

Main ®ndings

The output values of an arti®cial neural network
could be interpreted as Bayesian probabilities and

translated into verbal statements such as `de®nite',

`probable' and `possible' (HedeÂn et al., 1996b). How-
ever, output values close to 0 or 1, i.e. with a very low

or very high probability for a certain diagnosis, are

not always correct, the reason being that the training

set is not entirely representative of the test cases. Such

a condition needs to be ful®lled in order to have a

probabilistic interpretation of the output signal
(Richard & Lippman, 1991). These mistakes are not

common but it makes it dif®cult to rely on the

computer-based advice. The results of the present
study show that computer advice can be validated by

estimating the error of an arti®cial neural network

output. ECGs with a low error estimate were almost
always correctly classi®ed.

The results of the conventional criteria show that

the statements `anterior myocardial infarction' and
`no anterior myocardial infarction' were not correct

more often than the statements `possible' or `proba-
ble' anterior myocardial infarction. Thus, presently

used interpretation programs based on rule-based

criteria do not signal when an interpretation is given
with great or low con®dence, nor do neural networks

without the error estimates.

Neural networks

ECG interpretation programs are widespread, and
most of these programs use a deterministic approach,

i.e. human experts construct rules or criteria. A small

number of programs are based on statistical methods.
Yang et al. (1994) have implemented arti®cial neural

networks for the diagnosis of myocardial infarction in

the GRI program. These networks improved the
performance and therefore networks are now part of

the GRI program. A common feature of computer-

based decision support systems is the trade-off
between accuracy and transparency. A small number

of rules can be easy to follow but the accuracy is often

not satisfactory. The performance of the rule-based
ECG interpretation programs has been improved by

the construction of highly complex criteria. The

complexity often makes it very dif®cult or impossible
for the ordinary user to ®nd out the exact reasons for a

diagnostic statement. Neural networks are even more

of black boxes compared to the deterministic
approach, but the networks have out-performed

criteria in a number of applications in the medical

®eld (HedeÂn et al., 1994, 1997). Neural networks are
well suited for pattern recognition tasks which are

common in the interpretation of ECGs. Pattern

recognition tasks take place intuitively in humans
and therefore a very accurate but not very informative

Figure 3 A nearly perfect ROC curve presenting the net-
work performance in the group of test ECGs with low error
estimates; the corresponding curves for the total test set and
the group of test ECGs with high error estimates are also
presented.
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network is acceptable in many situations. The method

used to validate the network outputs presented in this

study will not improve the transparency of the
networks but may make it easier to rely on the

network. In this study, a bi-group classi®cation task,

anterior myocardial infarction or not, was used for the
development and testing of the method. However, the

method is also applicable to multi-classi®cation prob-

lems, which are common in clinical practice.

Limitations of the study

The performance of a neural network depends on the

size and composition of the material used for training.
The method presented in this study divides the

material into a training, a validation and a test set.

The training set must contain suf®cient cases that the
n-dimensional data space can be divided into a number

of clusters, and in each cluster a reasonable number of

cases must be present in order to obtain a good
estimate of the validation error. Therefore, this

method could only be successfully applied to diagnos-

tic problems where large databases are available.
Automated ECG interpretation is an area where neural

networks have been trained with thousands of exam-

ples (HedeÂn et al., 1997). Even though the training and
validation sessions are complicated and time-consum-

ing, it should be stressed that a neural network and the

method presented in this study will be easy to
implement in computerized electrocardiographs

worldwide once the method has been developed.

In this initial work, we have illustrated the feasi-
bility of a new method, but we have not established

criteria for how different error estimates could be

translated into statements. We de®ned `low' error
estimate as those 25% ECGs with the lowest error

estimate, which is not a true a priori de®nition but a

reasonable part of the test group. Further studies are
needed to establish how the error estimate could be

used clinically.

Conclusions

Arti®cial neural networks have proved to perform
well in pattern recognition tasks, for example in ECG

interpretation. The networks can be regarded as a

black box method, but the results of this study show
that the network outputs can be validated by esti-

mating the error. ECGs with a low error estimate

were almost always correctly classi®ed. This method

increases the possibility that arti®cial neural networks
will be accepted as reliable decision support systems

in clinical practice.
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Appendix

Estimating con®dence limits from validation set errors

and clustering

Below we present the strategy we have used for

estimating con®dence limits, based on de®ning close-
ness in terms of a clustering algorithm and normal-

izing the con®dence limits by means of an error

estimate for each cluster. The idea is to characterize
the training data in terms of a set of K clusters and

then use a validation set that has not been `infected'

by the training process, to correlate observed errors
with the distance between the validation set data

points and the clusters. Once this relation is estab-

lished, the con®dence levels of real test set data points
can be estimated. The procedure is as follows.

· Divide the labelled data into a training set DTr, a

validation set DV and a test set DTe. Each multi-
dimensional data point (in this study measurements

from an ECG) is denoted xi below.

· With a pre-de®ned number of clusters K, assign
each data point xi of the training set, to a cluster

centre ya (a � 1,. . .,K) using a modi®ed K-means

clustering procedure (MacQueen, 1967). In this
method, cluster assignments are computed by

minimizing the squared distance between data

points xi and cluster centres ya, where the latter

are the parameters to be determined.
· Train a network using the set DTr and then freeze

the trained weights.

· Process the validation set DV through the network,
and, for each datapoint, record the validation error

Ek. Ek is simply the absolute value of the difference

between the network output and the corresponding
target value for validation point xk. Since the cluster

assignments for each of the validation set points are

known from above, one can compute the errors Ea

corresponding to the different clusters ya according

to

Ea �
P

k�a Ek

na
�1�

where the sums runs over all data points in cluster a.
na is the number of data points in cluster a. This is

the key relation, where cluster assignment gives an

error estimate. Ea is simply related to the con®dence
limit CLa for cluster a through the de®nition

CLa � t95Ea�����
na
p �2�

in the case of 95% con®dence level, where

t95 � 1á96
· The next step is to de®ne a probability Pia that

datapoint xi belongs to cluster centre ya. Pia

obviously must ful®l the normalization condition
S aPia � 1. Pia is given by

Pia � eÿ�xiÿya�2=TP
b eÿ�xiÿyb�2=T

�3�

The parameter T governs the degree of fuzziness

for the probability. For a large T, all clusters are
equally probable for a given data point (Pia � 1/K).

On the other hand, in the limit T ! 0, an either/or

situation is obtained (Pia¢ � 1 and Pia � 0, a 6� a ¢).
In this study, T � 1 is used.

· Finally, one can compute CLl for a given data point

l in the test set as follows:

CLl �
X

a

PlaCLa �4�

where Pla has been computed using the cluster

centres ya and the formula given above. CLl is
termed the error estimate measure in the text.

A con®dent decision support system � H. Holst et al.
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