
Pergamon
NeuralNehvorks,Vol. 10,No. 2, pp.263–271,1997

01997 ElsevierScienceLtd.M rightsreserved
Printedin GreatBritain

0893-6080/97 $17.00+.00

PII: S0893-6080(96)00088-3

CONTMBUTEDARTICLE

A Study of the Mean Field Approach to Knapsack Problems

MATTIAS OHLSSON1 AND HONG P12

‘University of Lund and ‘Department of Computer Science and Engineering, Portland

(Received 4 May 1995; accepted 6 March 1996)

Abstract—Themean field theory approach to knapsackproblems is extended to multiple knapsacks and generalized
assignmentproblems withPotts meanfield equationsgoverning the dynamics.Numerical tests against “state of the art’
conventional algorithms shows good performance for the meanfield approach. The inherentlyparallelism of the mean
field equations makes them suitable for direct implementations in microchips. It is demonstrated numerically that the
performance is essentially not affected when only a limited number of bits is used in the meanjield equations. Also, a
hybrid algorithm with linearprogramming andmeanfield components is showed tofirther improve theperjormance for
the difjicult homogeneousN x M knapsackproblem. 01997 Elsevier Science Ltd. All Rights Reserved.

Keywords—Knapsackproblems, Generalizedassignmentproblems, Mean field theory, Neural networks, Finite
precision.

1. MOTIVATION AND RESULTS

Suppose you want to go hill climbing carrying a knap-
sack filled with a selection of possible items. Which
items should you choose, so as to maximize your com-
fort, when the knapsack is bounded by volume and
weight constraints. This is a simple example of a combi-
natorial optimization problem with inequality con-
straints. A more real-world problem is that of resource
allocation, such as optimally assigning m tasks to n pro-
cessors, given the profit and the amount of resource for
each task and the total resource available for each pro-
cessor. These two knapsack problems, where the latter is
generally known as the generalized assignment problem,
are NP-complete, meaning that no algorithm exists that
exactly solves the problem in polynomial time. It is
therefore important to develop fast algorithms that find
good approximate solutions.

Feedback artificial neural networks (ANN) have
turned out to be powerful in finding good approximative
solutions to difficult combinatorial optimization problems

Acknowledgements: We would like to thank Prof. Carsten Peterson
for valuable discussions during the course of this work. This paper was
in part supported by Ellemtel AB. Hong Pi also gratefully
acknowledges funding provided by the Advanced Research Projects
Agency and the Office of Naval Research under grant ONR NOOO14-
92-J-4062.

Requests for reprints should be sent to Mattias Ohlsson, Electronics
Institute B349, Technical University of Denmark, 2800 Lyngby, Den-
mark; e-mail: ohlssorr@ei.dtu.dk.

(Hopfield & Tank, 1985; Peterson & Soderberg, 1989;
Gis16net al., 1989, 1992). The idea is to map the problem
onto binary or M-state neurons (spin variables) with an
appropriate energy function. The system is relaxed using
mean field theory (MFT) techniques in order to avoid
local minima. This procedure, sometimes called mean
field annealing (MFA), provides a good estimate of the
global minimum of the energy.

In Ohlsson et al. (1993), a MFT approach was used for
the N X M knapsack problem with encouraging results.
In this paper we extend and improve the MFA method for
knapsack problems with the following main results:

●

●

In a VLSI implementation of an ANN, the weights and
summations are typically subject to limited precision
(Alspector et al., 1991; Murray et al., 1992). We simu-
late the effects of numerical precision and find that the
performance of the MFA technique can be adequately
reproduced on a VLSI microchip as long as the
weights can be stored with more than 5 bits and sum-
mations with more than 7 bits (including one sign bit).
Linear programming (LP) based on the simplex
method is designed for continuous optimization pro-
blems, but can be used to find approximate solutions to
discrete ones like the knapsack problem. The LP solu-
tions often consist of a series of 1s and 0s together
with a remaining part of real numbers. Using the MFA
method for this ‘part and combining the two results
increases the performance, compared to the ‘‘pure’
MFA method, on homogeneous N X M knapsack
problems with large M.

263

264 M. Ohlsson and H. Pi

● The multiple knapsack and the generalized assign-
ment problem represents two generalizations of the
standard knapsack problem. Both problems can be
mapped onto M-state Potts neurons with Potts mean
field theory equations for the dynamics. Numerical
comparisons against “state of the art” conventional
algorithms (Martello & Toth, 1990) shows good
performance.

2. REVIEW OF THE KNAPSACK PROBLEM

2.1. Formulation

The knapsack problem is defined as follows: Given a set
of N items and a knapsack with

Pj =projlt for item j,

~j = weight for item j, (1)

c = capacity of the knapsack. (2)

Pick out a subset of items so as to maximize the
utility U,

N

U= ~pjSj
j=l

subject to

(3)

with sj being {O, 1} decision variables (item j goes into
the knapsack if sj = 1). The variables Pj, Wj and c that

define the problem can be either real or integers, but we
will assume that they are positive. We will also assume,
without loss of generality, that

$ Wj > C (4)
j= 1

Wj 5 cVj. (5)

If eqn (4) is violated then all sj = 1 and the utility is

1

P(p.j)

Zl__
o I

given by U = Epj. Furthermore, if eqn (5) does not hold
then trivially sj = Ofor each j such that Wj > C.

In this “standard’ knapsack problem there is
only one constraint equation (eqn (3)). One can
however think of situations where it is necessary to
have two or more equations of constraint. We can
imagine the knapsack to be bounded by a weight
and a volume constraint. In Ohlsson et al. (1993), a
more generalized knapsack problem was considered
with M equations of constraint. Equations (1 and 2)
then read,

Wj + Wi= weight for item j in constraint i,

c + Ci= i : th knapsack capacity,

and eqn (3) changes to

~w#jSc~, (i=l---JM) (6)
j=l

We will consider a class of problems where WUandpj are
independent of each other. The weights will be uniform
random numbers on the unit interval and the capacities
will be fixed to a common value c. For c = N/2 almost
all items will go into the knapsack but it will be nearly
empty if c < N/4. We will use the most difficult case c
= N/4 where approximately NJ2 items goes into the
knapsack. The profits will be either Pj E [O, 1]
(randomly) or fixed to the value Pj = 1 (see Fig. 1).

These two different distributions for Pj will be referred
to as inhomogeneous and homogeneous problems,
respectively. For the homogeneous problem maximizing
the utility is equivalent to maximizing the number of
items that goes into the knapsack. This is generally a
more difficult problem since many algorithms benefit
from a possible ordering of the Pjs.

2.2. The Mean Field Annealing Approach

Since the knapsack problem is NP-complete exact solu-
tions are practically inaccessible for large problem size,
N. It is therefore necessary to develop algorithms that
provide good approximate solutions in polynomial
time. The mean field annealing is one approach. One

P(p.j)

(b)

1

flGURE 1. (a) Inhomoganao ua diatributiona for tha profita. (b) Aii profits ara aquai to unity (hornoganaous) maaning that
maximizing tha utiiity is tha aarna aa maximizing tha numbar of itama in tha knapaack.

A Study of the Mean Field Approach to Knapsack Problems 265

starts by mapping the problem onto binary neurons with
an energy function E, where the equations of constraint
are implemented in a soft manner using a Lagrangian
multiplier. One has (Ohlsson et al., 1993),

where @(x)is given by

@(x) = @(X)”x, (8)

with @(x)being 1 ifx > 0, and Ootherwise. The desired
solution is given (for large enough u) by the global mini-
mum of E. It is however only a reformulation and E is
very difficult to minimize. Local methods such as gradi-
ent descent techniques will very easily be trapped in a
local minimum. The use of MFT techniques will avoid
such local minima and the MFT equations for a system
defined by eqn (7) are given by

‘i=#l+tanh(-%)l(’=’>o>N)‘9)
where the discrete variables ~ihave been replaced by the
(continuous) mean field variables

Vi = < Si >~ .

The “temperature” T has been introduced as an anneal-
ing parameter. Start with a high value of T and gradually
lower T to a small value while iterating the vi-equations
given by eqn (9).

Due to the non-polynomial form of the constraint term
(eqns (7 and 8)) special care is needed when calculating
the derivative dEldvi appearing in eqn (9). First, one
wants to avoid self-coupling terms coming from the
non-linear constraint penalties. Second, the derivative
is not differentiable at points where Ejwij sj = ci. We
avoid both problems by replacing dE/Clviwith the differ-
ence in E computed at vi = 1 and vi = Orespectively.l
We obtain

F(:wk’v’-ck)‘=’-+($W’’VC-)’)Vi=Ol

2.3. Hybrid Approach - Linear Programming + MFA

Linear programming (sometimes called linear optimiza-
tion), based on the simplex method (Press et al., 1986), is
designed to solve continuous optimization problems with

‘ This is exactly what one would get if one would derive the mean
field equations from a variational principle with a factorized probability
function.

both equality and inequality constraints. For the contin-
uous knapsack problem (si ~ xi E [0, 1]) one can use
LP to get an exact solution in polynomial time (LP scales
like N2M2).A typical solution for aN = 30 and M = 5
problem withp, w E [0, 1] randomly and all ci = N/4,
looks like

~ = (Loo, i.oo, I .00,1.00,1.00,1.00, 1.00,1.00,1.00,1.00,

1.00,1.00,0.70,0.15, 0.00,1.00,0.00,1.00, 0.55,0.00,

0.00,0.00,1.00,0.00, 0.00,0.19,0.00,0.00, 0.00, 0.00).

There is a series of 1s and 0s and a remaining part of real
numbers. The obvious LP algorithm for the binary knap-
sack problem is given by,

{

0 if Xi <1
s, =

1 otherwise.

It is easily augmented with a simple greedy heuristics:
For all si = Oproceed from larger to smallerpi and put si
= 1 if it does not violate any constraints. Linear pro-
gramming + greedy heuristics (LG) finds good solu-
tions, especially for inhomogeneous problems.

Another approach is to combine LP with the mean
field annealing method. Given the LP solution with all
xi = 1 and xi = Ofixed, one defines a reduced knapsack
problem that only contains items corresponding to the
non-integer ~is. The profits and the weights remain the
same but the capacities change according to

Ci + Ci’=ci - ~Wijtixj,~.

J

Having defined this reduced problem, one uses the mean
field annealing method to find an approximate solution.
The combined result from the two methods (called LM)
is used as the solution for the original problem. The LM
method tends to improve the solution quality for homo-
geneous and large M problems where the LP solution
contains a lot of non-integer XiS.

2.4. Numerical Comparisons

In this section we will compare the performance of the
LM method against other algorithms. For small-sized
problems (N, M s 30–40) one can check against
exact solutions, but for large problem sizes comparisons
are only possible among the methods for approximate
solutions. For all problems the weights are random num-
bers with WUE [0, 1]. The capacities ci are all fixed to
the value N/4, meaning that approximately half of the
items will go into the knapsack. The profits will be either

Pj ● [0, 11randomlyOrpj= 1(i = L...,N).

2.4.1. Branch and bound. For an exploratory search the
number of computational steps increases like 2N. The
number of steps can, however, be substantially reduced

266 M. Ohlsson and H. Pi

TABLE 1
Compariaona of Performance and CPU Consumption for Different Algorithms on Small (N = 30) Knapsack Problems. The CPU

Consumption Refera to a DEC Alpha 3,000/400 Workstation

N PJ M BB MFA LM LG SA

30 [0, 1] 5
10
30

1 5
10
30

30 [0, 1] 5
10
30

1 5
10
30

10.49
10.00
9.34

16.56
15.22
13.57

0.33
0.67
3.4

32.3
69.4

319

10.33
9.82
9.14

16.29
14.88
13.12

0.04
0.06
0.15
0.04
0.05
0.14

Utility
10.31 10.39
9.81 9.87
9.15 9.19

16.41 16.31
15.01 14.69
13.29 12.61
CPU time (s)
0.02 0.02
0.04 0.03
0.07 0.05
0.04 0.04
0.07 0.06
0.18 0.13

10.35
9.86
9.19

16.02
14.64
13.00

0.10
0.11
0.16
0.10
0.11
0.15

using a branch and bound (BB) tree search (Martello &
Toth, 1990), checking bounds on constraints and utility
for subtrees, and thereby avoiding unnecessary search-
ing. If there is no (positive) correlation between profits
and weights it is likely that an item with large profit will
go into the knapsack. Ordering the problem with decreas-
ing profits,

PIP2PN

will accelerate the BB technique. For homo-
geneous problems no such ordering can be
done and the BB method may require a large
number of computational steps to find the
exact solution.

2.4.2. Mean jield annealing. The decision process is con-
veniently measured by the saturation E = ;Zj(vj – 0.5)2.
For small Z (high T) all the Visare close to 0.5 and no
decisions are made, but as the vis become either 1 or OZ
increases to finally saturate at X = 1 (T ~ Olimit). The
annealing is started at T. = 10 and is lowered according
to the schedule

[

N–1
0.99 if 0.1< E < —

Tn+l =kTn, k= N

\ 0.90 otherwise

It is terminated when E > 0.999 and A < 0.00001,
where A = $Zi(vi(n + 1) – vi(n))2 measures the rate of
change. We employ a progressive constraint coefficient
u = l. O/Tto avoid final constraint violations. A simple
greedy heuristics is used if the final solution does violate
any constraint. This method scales like NM.

2.4.3. Simulated annealing. Simulated annealing (SA,
Kirkpatrick et al., 1983) is easily implemented in terms
of attempted single-spin flips, subject to the constraints.
The following update rule will, given a logarithmic
annealing schedule, minimize E in eqn (7),

{

(1– S,) if AE <0
Si +

(1–sJ with Prob(e-m’~) if AE a O.

For practical reasons we use the faster exponential decay
of the temperature, T. + I = kTn, where TO = 15, TM
= 0.01 and k = 0.995 in order to get a similar CPU-time
consumption as the MFA algorithm.

TABLE 2
Comparisons of Performance and CPU Consumption for Different AlgorithmSon Large Knapsack Probiemswith 50 s N s 400.

The CPU Consumption Refers to a DEC Alpha 3000/400 Workstation

Utility CPU time (s)

N M MFA LM LG SA MFA LM LG SA

50 25 23.81 24.18 23.22 23.32 0.22 0.40 0.34 0.40
50 22.45 22.85 21.57 22.10 0.52 0.81 0.62 0.66

100 50 47.96 48.89 46.88 46.73 1.8 4.5 4.1 2.1
100 46.03 46.90 44.52 45.09 2.8 6.7 5.8 2.8

200 100 96.24 98.38 94.66 94.10 8.5 37 36 6.9
200 93.64 95.40 91.22 91.92 20 105 101 17

400 200 193.5 197.4 190.9 189.9 43 447 437 31
400 190.0 193.1 186.1 187.1 79 1054 1026 57

A Study of the Mean Field Approach to Knapsack Problems 267

algorithm. As expected, LG performs very well for inho-
mogeneous problems and it is actually slightly better
than the MFA algorithm. The strength of the LM
(LP + MFA) approach is apparent for the homogeneous
problems, where it is a winner.In Table 2 comparisons
are made on large homogeneous @j = 1, j = 1,..., N)
problems and the numbers are again averages over 1000
runs except for N = 400 where only 250 mns were
made. The MFA and LM algorithms give consistently
higher utilities compared to LG and SA. It is however
important to note that the LM scales like N*M2 and
requires substantially more CPU-time than the faster
MFA algorithm. The decreasing performance of SA
(with increasing N) can be explained by the fact that
SA is based on partial phase-space exploration and there-
fore needs slower annealrng schedules with increasing
problem size.

3. FINITE PRECISION IN THE MFT EQUATIONS

Recurrent networks are notoriously slow when simulated
on a serial computer. Massively parallel implementation
on a VLSI chip can push the speed to 108–109 connec-
tion updates per second (CUPS, Murray et al., 1992).
However, currently the weights and activations on a
microchip are typically stored with 5 bits (4 bits plus a
sign bit), and the summations are typically reproducible
to about 10 bits (Alspector et al., 1991; Murray et al.,
1992). It is a legitimate question to ask how the MFA
performance becomes degraded when subjected to
limited precision.

To measure the effects of finite bits, we use the ratio

~(N., Narg)
R=

EO ‘

where -E. is the utility as given in eqn (7) for a MFA
solution with infinite (machine) precision, and
E(NV~arJ is the utility for a MFA solution learned
with finite precision. The finite precision effect is
simulated by assuming that the decision variable vi
given in eqn (9) is stored by one sign bit plus N.
bits in the range [0.0, 1.0], and the argument of
tanh (the summation) in eqn (9) is represented by
one sign bit plus N.,~ bits to cover numbers in the
range [– 5.0, 5.0]. We further assume that the chip is
able to treat the overflows (underflow) as the max-
imum (minimum) number represented by the bits. Fig.
2 shows the float numbers as represented by (4 + 1)
bits covering [– 5.0, 5.0].

In Fig. 3 we show the relative performance R as a
function of the finite bits N. and N~v~for a M = N
= 30 knapsack problem. The numbers in parentheses
are the standard deviations for 10 simulation runs. Fig.
4 shows the same results for a M = N = 100
problem. The number of bits in the figure does not
include the sign bit. The results show that there is
essentially no performance degradation if N.,g 2 6
and N. k 6. For N“ = 4, the number of bits
implemented in the Bellcore chip (Alspector et al.,
1991) as well as the chip by Murray et al. (1992), the
MFA solution would be adequate although typically it
would be 590 off from the optimum.

8 I ! I , 1 I , 1 ,

-2
t
I

-4
t

I
-6t

I
-8+ ! I 1 1 I 1 I 1 [
-10 -8 -6 -4 -2 0 2 4 6 8 0

x

FIGURE 2. The approximate value of x using 4 bits plus 1 sign bit.

268 M. Ohlsson and H. Pi

16

t

0.895 0.967
(0.070) (0.046)

14
t

0.895 0.967
(0.070) (0.046)

12
I

0.888 0.973
(0.071) (0.050)

Narg
10

t

0.879 0.950
(0.064) (0.051)

8
t

0.862 0.966
(0.044) (0.053)

6

t

0.900 0.959
(0,057) (0.025)

4

t

0.786 0.910
(0.085) (0.081)

2

t

0.000 0.000
(0.000) (0.000)

1

1.005
(0,011)

1.005
(0.011)

1.005
(0.011)

1.005
(0.011)

1.005
(0.011)

1.001
(0.022)

0.939
(0.049)

0.000
(0.000)

6

1 1 1 1 I

1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

1.000 1.000 1.000 1.000 1.000
(0.000) (0.000) (0.001) (0.000) (0.000)

0.992 1.004 1.002 1.007 1.001
(0.017) (0.013) (0.006) (0.019) (0.021)

0.981 0.927 0.915 0.920 0.920
(0.036) (0.077) (0.068) (0.073) (0.073)

0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

1 1 1 1 I

8 10 12 14 16

N,

FIGURE 3. The relative performance R (and its standard deviation in parentheses) versus the number of bita (not including the
sign bit) in vand the argument of tenh in eqn (9) ina 30 x 30 knapsack problem.

4. THE GENERALIZED ASSIGNMENT
PROBLEM

4.1. Formulation

The generalized assignment problem (GAP) extends the
original knapsack problem by introducing more than one
knapsack. It can be described as the problem of assigning
N tasks to M processors in an optimal way. To be more
precise (using the knapsack “language’ ‘), given N items
and M knapsacks with

pi= profit of item j if assigned to knapsack i

WU= weight of item j if assigned to knapsack i

ci = capacity of knapsack i.

assign each item to exactly one knapsack with the objec-
tive to maximize the utility U without exceeding the
capacity for each knapsack. Formally,

MN

maximize U = >. ~, pijsij (lo)
in 1j= 1

N

subject to ~ wtisij~ ci (i= 1, ..., M)
j= 1

5s~ = 1 O“=1, . . .,N)
i=l

Su= 1 or O, (11)

where SU = 1 if item j is assigned to knapsack i and O
otherwise. There will not always be a feasible solution
because of the capacity constraints (eqn (11)). If, how-
ever, one allows for possible unassigned items, feasible
solutions can always be found. This is called LEGAP.

G~ : f Sij = 1 (j= 1, ...,~) (12)
iz 1

M

LEGAP : ~ Sij s 1 (’j= 1, ..., N) (13)

Any instance of LEGAP can be turned into a GAP by
adding an extra knapsack with capacity cJf +1 = n,

profitsPM +L j = O and weights WM+ 1,j = 1, 0 =
1,..., N). This extra knapsack does not contribute to the
utility but will always admit a feasible solution. It is
however important to note that, given a set of profits,
weights and capacities, the GAP and LEGAP solutions
will generally not be the same. It may be favorable for
LEGAP to allow for possible unassigned items, with
small profits and large weights, when maximizing the
utility.

If the profits and weights are the same for all knap-
sacks but may differ from item to item (pti, wij ~
Pj, wj) then LEGAP has turned into a multiple
knapsack problem. The multiple knapsack will not
be treated as a separate problem since it is a special
case of LEGAP.

A Study of the Mean Field Approach to Knapsack Problems

1 1 1 1 I 1 1 I

16 - 0.884 0.942 0.999 0.999 1.000 1.001 1.001 1.001
(0.023) (0.019) (0.012) (0.011) (0.008) (0007) (0.004) (0.004)

14 - 0.874 0.954 0.999 0.997 0.999 1.000 1.001 0.999
(0.038) (0.024) (0.012) (0.011) (0.006) (0.008) (0.005) (0.003)

12 - 0.872 0.955 0.999 0.998 0.999 0.998 0.998 1.001
(0.038) (0.01 1) (0.010) (0.010) (0.010) (0.010) (0.006) (0.007)

Narg
10 - 0.861 0.958 0.990 1.000 0.998 0.998 1.000 0.998

(0.034) (0.022) (0.009) (0.010) (0.005) (0.007) (0.006) (0.008)

8 - 0.854 0.948 0.997 0.997 1.000 1.001 0.996 0.994
(0.036) (0.023) (0,007) (0.009) (0.010) (0.012) (0,012) (0.010)

6 - 0.893 0.964 0.995 0.997 0.999 0.996 0.994 0.996
(0.027) (0.015) (0.012) (0.011) (0.009) (0.004) (0.007) (0,012)

4 - 0.804 0.901 0.935 0.953 0.942 0.956 0.940 0.948
(0.079) (0.060) (0.040) (0.058) (0.051) (0.049) (0.045) (0.049)

2 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

o t 1 1 1 1 1 I 1

0 2 4 6 8 10 12 14 16

Nv

269

FIGURE 4. The relative performance R (and ite standard deviation in parentheses) versus the number of bits (not including the
sign bit) in vand the argument of tanh in eqn (9) in a 100 x 100 knapsack problem.

4.2. A Mean Field Annealing Approach to GAP

Both GAP and LEGAP are NP-complete and are con-
fined to approximate solutions for large N problems. We
will again use the MFT equations to construct a polyno-
mial-time algorithm. GAP (eqns (10–12)) is mapped
onto a generic energy function EG, but with M-state
Potts neurons rather than binary ones as in the knapsack
case. EG is given by

M /P1 \

where ;j is constrained to one of the unit vectors in the M-
dimensional hypercube. The MFT equations for Vti= <
Sti> ~corresponding to the system defined by eqn (14) is
for GAP given by (Peterson& Soderberg, 1989),

e“{l

with

dEG 1
‘iJ = – dvjjF

(15)

For the case of LEGAP, one also allows for possible
“zero’’-vectors @j = (O, O,..., O)),which modifies the
MFT equations according to

e%

The derivative dEG/dvij is treated exactly as in the knap-
sack case. Self-coupling terms are avoided by a linear
approximation of EG(Vi) and one obtains

—%+p”-a[($wik‘j=
-t$wikvik-ci)“ij=ol

4.3. Numerical Comparisons

In this section we will perform some numerical experi-
ments for the generalized assignment problem defined in
the previous section (eqns (10–12)). The profits, weights
and capacities are generated according to

Pij, wij G [1, W uniformly random

ci=~~wij,(i=l,...,fW,
l–

where pij, wij and Ci are integers. The capacities will
generally admit feasible solutions, although they are
rather tight. In real world applications one often finds a
(positive) correlation between the profits and the
weights. In order to simulate such correlations we also
consider a second class of problems where the weights
are given by, Wti c ~i, Pij + 20] (uniformly random).

270 AI. Ohlsson and H. Pi

TABLE 3
Numerical Comparisons of Performance and CPU Consumption on GAPs with Small Al.The MFA Algorithm ia Checked Against
an Exact DBB Method and a Polynomial-time Algorithm (MTG) for Approximate Solutiona. All the Testa were Carried Out on a

DEC Alpha 30001400Workstation

Utility/N CPU Time (s)
N M MFA MTG DBB MFA MTG DBB

Uncorrelated weights
20 5 77.5 75.9 78.5 0.15 0.001 2.2

10 83.8 83.7 85.0 0.41 0.002 10.6
Correlated weights
20 5 39.0 35.3 43.0 0.21 0.001 16.3

10 35.5 35.6 42.6 0.48 0.002 4.9

4.3.1. Mean$eld annealing. For the GAP formulation Vti
is given by the Potts update equation (eqn (15)) and at
high temperatures all VYSwill merge into a common fix
point, V.= I/M. The start temperature is taken to be TO=
10 IIILIX(ij@~) = 1000 making vij = V. (V i,j). As in the
knapsack case we monitor the decision process by the
saturation Z = ~Ei,jv~ which starts at E = ~ and satu-
rates at Z = 1. The annealing schedule is T. + 1 =
kTfl with fixed k = 0.98. The constraint coefficient is
u = 25/T for all the problems considered here. Final
constraint violations are treated by a simple greedy heur-
istics and may, in some rare cases, lead to unassigned
items.

As a reference we will use two conventional algo-
rithms, one for exact and one for approximate solutions.
The algorithms (including the F77 code) is taken from
the reference (Martello & Toth, 1990). The exact method
is a depth-first branch and bound (DBB) algorithm and is
a generalization of the BB technique for the standard
knapsack problem. The algorithm for approximate solu-

tions (MTG) first finds a feasible solution by iteratively
assigning items to knapsacks using simple criteria. The
current solution is then augmented by local exchanges of
items (for details see Martello & Toth, 1990).

Table 3 shows the result for small N problems where
one can compare against the exact solutions. The num-
bers shown are averages over 1000 independent runs.
The MFA algorithm performs well for both uncorrelated
and correlated weights. It performs significantly better
than MTG on problems with small M.

For larger problem sizes exact solutions become prac-
tically inaccessible and we are confined to approximate
solutions. Table 4 presents the result for experiments
with 30 s N s 200. The DBB algorithm can be turned
into an approximative method by limiting the number of
backtrackings performed (Martello & Toth, 1990). The
method referred to as DBB1 is limited to 100 backtrack-
ings and DBB2 to 10 times that amount. It was however,
not possible to use DBB1 and DBB2 for the N = 200
problems because of a too long execution time. As usual

TABLE 4
Comparisons for Large N GAPs. The DBB1 Algorithm ia Limited to 100 Backtrackings While DBB2 AlIowa for 10 Times that

Amount. The CPU Consumption Refers to a DEC Alpha 3000/400 Workstation

Utility/N CPU Time (s)
N M MFA MTG DBB1 DBB2 MFA MTG DBB1 DBB2

Uncorrelated weights
30 5

10
50 5

10
100 10

20
200 10

20
Correlated weights
30 5

10
50 5

10
100 10

20
200 10

20

78.9
86.1
80.3
87.7
89.0
93.4
89.5
94.2

76.7
85.4
77.4
86.3
86.1
93.1
86.0
92.1

77.3
85.5
77.9
86.4
86.2
93.1

78.1
85.7
78.3
86.4
86.2
93.1

0.21
0.61
0.34
1.0
2.3
5.8
5.4

14

0.002
0.003
0.003
0.005
0.012
0.019
0.024
0.037

0.065
0.083
0.11
0.16
0.56
0.81

0.48
0.53
0.60
0.75
1.9
2.9

— — — —
— — — —

0.76
1.2
1.4
3.5

28
72

41.0
39.0
42.4
41.8
43.6
41.7
44.0
44.1

37.1
37.4
38.3
38.2
39.3
40.7
39.9
40.4

38.5
41.3
38.6
40.5
39.4
42.0

40.5
42.8
39.3
42.6
40.4
44.5

0.28
0.63
0.40
0.94
2.2
5.7
5.1

11

0.002
0.004
0.003
0.006
0.013
0.022
0.024
0.040

0.25
0.42
0.86
2.8

27
70

—— — —
— — — —

A Study of the Mean Field Approach to Knapsack Problems 271

all numbers are averages over 1000 independent runs.
The MFA algorithm gives consistently larger utilities
compared to the MTG method. The MTG is however a
very fast algorithm. Compared to DBB1 and DBB2 the
MFA algorithm usually finds the better solution and is
also faster for the correlated problems.

5. SUMMARY

We have extended the MFT approach to the N X M
knapsack problem to include the generalized assignment
and multiple knapsack problem. The approach has been
successfully tested on various problems, where it scales
Iike NM. A hybrid algorithm that combines linear pro-
gramming with mean field annealing has been showed to
further increase the performance for difficult homoge-
neous knapsack problems with large M.

Finite precision effects are important when imple-
menting the MFA algorithm on a VLSI chip. It is
shown numerically that no performance degradation
occurs in the MFT equations when the number of bits
N. used for storing vi and the number of bits N.,~ used in
the argument for tanh both satisfy N.r~,N. a 6. For the
Bellcore chip (Alspector et al., 1991), where Nv = 4, the
performance is approximately 5Y0 off from the
optimum. *

REFERENCES

Alspector, J., Aflen, R.B., Jayakumar, A., Zeppenfeld, T., & Meir, R.
(1991). Relaxation networks for large supervised learning problems.
Advances in Neural Information Processing Systems, 3, 1015-
1021,

Gish%, L., Peterson, C., & Soderberg, B. (1989). Teachers and classes
with neural networks. InternationalJournal of Neural Systems, 1,
167.

Gisk%, L., Peterson, C., & Soderberg, B. (1992). Complex scheduling
with Potts neural networks. Neural Computation,4, 805–831.

Hopfield,J.J., & Tank, D.W. (1985). Neural computation of decisions in
optimization problems. Biological Cybernetics, 52, 141.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by
simulated annealing. Science, 220, 671.

Martello, S., & Toth, P. (1990). Knapsack Problems – Algorithms and
Computer Implementations. Chicbester: John Wiley.

Murray, M., Burr, J. B., Stork, D. S., Lcung, M. T., Boonyanit, K.,
Wolff, G. J., & Peterson, A.M. (1992). Deterministic Boltzmann
Learning VLSI, Proceedings of the International Conference on
Application - Specijic Array Processors ASAP-92, pp. 206–217.

Ohlsson, M., Peterson, C., & Soderberg, B. (1993). Neural networks for
optimization problems with inequality constraints – the knapsack
problem. Neural Computation,5, 331–339.

Peterson, C., & Soderberg, B. (1989). A new method for mapping
optimization problems onto neural networks. InternationalJournal
of Neural Systems, 1, 3.

Press, W. P., Flannery, B. P., Teukolsky, S. A., & Vettering, W.T.
(1986). Numerical Recipes, TheArt ofScientfic Computing. Cam-
bridge: Cambridge University Press.

