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Abstra
tMotivation: Aligning protein stru
tures is a highly relevant task. It enables the studyof fun
tional and an
estry relationships between proteins and is very important for ho-mology and threading methods in stru
ture predi
tion. Existing methods typi
ally onlypartially explore the spa
e of possible alignments and being able to eÆ
iently handlepermutations eÆ
iently is rare.Results: A novel approa
h for stru
ture alignment is presented, where the key ingre-dients are: (1) An error fun
tion formulation of the problem simultaneously in terms ofbinary (Potts) assignment variables and real-valued atomi
 
oordinates. (2) Minimiza-tion of the error fun
tion by an iterative method, where in ea
h iteration a mean �eldmethod is employed for the assignment variables and exa
t rotation/translation of atomi

oordinates is performed, weighted with the 
orresponding assignment variables. Theapproa
h allows for extensive sear
h of all possible alignments, in
luding those involvingarbitrary permutations. The algorithm is implemented using a C�-representation of theba
kbone and explored on di�erent protein stru
ture 
ategories using the Protein DataBank (Pdb) and is su

essfully 
ompared with other algorithms. The approa
h performsvery well with modest CPU 
onsumption and is robust with respe
t to 
hoi
e of param-eters. It is extremely generi
 and 
exible and 
an handle additional user-pres
ribed
onstraints easily. Furthermore, it allows for a probabilisti
 interpretation of the results.
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Introdu
tionAligning protein stru
tures is a subje
t of utmost relevan
e. It enables the study of fun
-tional relationship between proteins and is very important for homology and threadingmethods in stru
ture predi
tion. Furthermore, by grouping protein stru
tures into foldfamilies and subsequent tree re
onstru
tion, an
estry and evolutionary issues may getunraveled.Stru
ture alignment amounts to mat
hing two 3D stru
tures su
h that potential 
ommonsubstru
tures, e.g. �-heli
es, have priority. The latter is a

omplished by allowing forgaps in either of the 
hains. Also, the possibility of permuting sites within a 
hain maybe bene�
ial. At �rst sight, the problem may appear very similar to sequen
e alignment,as manifested in some of the vo
abulary (gap 
osts et
.). However, from an algorithmi
standpoint there is a major di�eren
e. Whereas sequen
e alignment 
an be solved withinpolynomial time using dynami
al programming methods (Needleman & Wuns
h, 1971),this is not the 
ase for stru
ture alignment sin
e rigid bodies are to be mat
hed. Hen
e,for all stru
ture alignment algorithms the s
ope is limited to high quality approximatesolutions.Existing methods for stru
ture alignment fall into two broad 
lasses, depending uponwhether one (1) dire
tly minimizes the inter-atomi
 distan
es between two stru
tures or(2) minimizes the distan
e between substru
tures that are either presele
ted or suppliedby an algorithm involving intra-atomi
 distan
es.One approa
h within the �rst 
ategory is the iterative dynami
al programming method(Laurents et al., 1993; Gerstein & Levitt, 1996), where one �rst 
omputes a distan
e ma-trix between all pairs of atoms (e.g. C�) forming a similarity matrix, whi
h by dynami
alprogramming methods gives rise to an assignment matrix mimi
king the sequen
e align-ment pro
edure. One of the 
hains is then moved towards the other by minimizing thedistan
e between assigned pairs. This method does not allow for permutations. Anotherinter-atomi
 approa
h is pursued in Fali
ov and Cohen (1996), where the area ratherthan distan
es between two stru
tures is minimized.In Holm and Sander (1993) the approa
h is di�erent. Here one 
ompares distan
e ma-tri
es within ea
h of the two stru
tures to be aligned, whi
h provide information aboutsimilar substru
tures. The latter are subsequently mat
hed. A similar framework isused in Gibrat et al. (1996) and also in Lu (2000). Not surprisingly, in Holm and Sander(1993), Gibrat et al. (1996) and Lu (2000) permutations 
an in prin
iple be dealt with.There are implementation issues shared by both methodologies above. One is stru
tureen
oding (C� and/or C� of the 
hains). For many 
omparisons C� appears to be suÆ-
ient, whereas in some 
ases C� is needed. Also, the 
hoi
e of distan
e metri
 is a subje
t1



of 
on
ern in order to avoid the in
uen
e of outliers.The iterative dynami
al programming method (Gerstein & Levitt, 1996) has been exten-sively assessed for ba
kbone stru
tures (Gerstein & Levitt, 1998) from the S
op (Hub-bard et al., 1997) database, in whi
h protein stru
tures have been 
lassi�ed by visualinspe
tion. Some 
omparisons with S
op have also been performed (Matsuo & Bryant,1999) using the method in Gibrat et al. (1996).Here we present a novel approa
h, whi
h shares some of its philosophy from the iterativedynami
al programming method (Gerstein & Levitt, 1996). Its key ingredients are: (A)An error fun
tion formulation of the problem simultaneously in terms of binary (Potts)assignment variables and real-valued atomi
 
oordinates and (B) minimization of theerror fun
tion by an iterative method, where ea
h iteration 
ontains two steps:1. A mean �eld pro
edure for minimizing with respe
t to the assignment variables.2. Exa
t rotation and translation of atomi
 
oordinates weighted with the 
orrespond-ing assignment variables.The approa
h, whi
h is very general, has some very appealing properties:� Impli
it 
omplete exploration of the entire spa
e of alignments, whi
h allows forarbitrary permutations. To our knowledge, no other approa
h has this feature.� Probabilisti
 interpretation of the results. This feature is present without tediousMonte Carlo estimates sin
e the algorithm is deterministi
. Among other things,this implies that the approa
h is less sensitive to the 
hoi
e of distan
e metri
, sin
ethe distan
es are weighted with fuzzy numbers.� With its generality, almost arbitrary additional 
onstraints are easily in
orporatedinto the formalism in
luding di�erent fun
tional forms of gap penalties.The approa
h is tested using C�-representation of ba
kbones, by 
omparing the resultswith the approa
hes of Gerstein and Levitt (1996) and Holm and Sander (1993) as im-plemented in the Yale Alignment Server and Dali respe
tively and in one instan
ealso with Gibrat et al. (1996) (Entrez). In 
hoosing protein pairs to align we fol-lowed Gerstein and Levitt (1998) to a large extent. In Gerstein and Levitt (1998) pairswith marginal sequen
e overlap but where ea
h protein in a pair belongs to the sameS
op superfamily and therefore have a similar stru
ture were pi
ked for assessment. Wesele
ted pairs from a varied sele
tion of the families used in Gerstein and Levitt (1998)to test our algorithm: 2



� Dihydrofolate Redu
tases (�=�)� Globins (all-�)� Plasto
yanin/azurin (all-�)� Immunoglobulins (all-�)In addition, we test the permutation 
apa
ity of our approa
h, by aligning:� Permuted proteins (winged helix fold)When assessing the algorithm, we limit ourselves to a 
ore version, where C� degreesof freedom are not in
luded. Also, no post-pro
essing of the results is done. We defersu
h elaborations and others to forth
oming publi
ation. Nevertheless, the 
ore versionof our approa
h is already very 
ompetitive even for 
hains, where permutations arenot needed. For the latter 
ase, the other algorithms 
ould not be tested using the
orresponding WWW-servers. In the instan
es, where we have tested it for this kind ofproblems, it also performs well.The algorithm is implemented in C++. Given its generality and power, the CPU demandis quite modest { it s
ales like the 
hain lengths squared and on the average requires afew se
onds on a Pentium 400MHz PC.MethodsThe AlgorithmIn what follows we have two proteins with N1 and N2 atoms to be stru
turally aligned.This is a

omplished by a series of weighted rigid body transformations of the �rst 
hain,keeping the se
ond 
hain �xed. We denote by xi (i = 1; :::; N1) and yj (j = 1; :::; N2) theatom 
oordinates of the �rst and se
ond 
hain, respe
tively. The phrase "atom" will beused throughout this paper in a generi
 sense { it 
ould represent individual atoms butalso groups of atoms. In our appli
ations it will mean C�-atoms along the ba
kbone. Asquare distan
e metri
 between the 
hain atoms is used,d2ij = jxi � yjj2 (1)but the formalism is not 
on�ned to this 
hoi
e.We start by dis
ussing the en
odings and error fun
tion and then we present a methodfor minimizing the latter.The Gapless Case. For pedagogi
al reasons, we start o� with the gapless 
ase with3



N1 = N2. We de�ne binary assignment variables sij su
h that sij = 1 if atom i in one
hain mat
hes j in the other and sij = 0 otherwise. Sin
e every atom in one 
hain mustmat
h one atom in the other, the following 
onditions must be ful�lled:N1Xi=1 sij = 1 j = 1; : : : ; N2 (2)N2Xj=1 sij = 1 i = 1; : : : ; N1 (3)A suitable error fun
tion to minimize subje
t to the above 
onstraints (Eqs. (2,3)) isE
hain = N1Xi=1 N2Xj=1 sijd2ij (4)where the spatial degrees of freedom, xi, are 
ontained in the distan
e matrix d2ij. Thuswhenever sij=1 one adds a penalty d2ij to E
hain. Note that Eq. (4) is to be minimizedboth with respe
t to the binary variables sij and the real-valued 
oordinates xi.The Gapped Case. Allowing for gaps in either of the 
hains is implemented by extend-ing sij to in
lude 0-
omponents in a 
ompa
t way; si0 = 1 and s0j = 1 if an atom (i or j)in one 
hain is mat
hed with a gap in the other and vi
e versa. Hen
e, gap positionsare not represented by individual elements in sij; rather the gap-elements 
orrespond to
ommon sinks. The matrix S, with elements sij, 
ontaining gap-elements is shown inEq. (5).
S = 0BBBBBBBBBB�

s01 s02 ::: s0N2s10 s11 s12 ::: s1N2s20 s21 s22 ::: s2N2:::sN10 sN11 sN12 :::: sN1N2
1CCCCCCCCCCA (5)

Some 
aution is needed when generalizing Eqs. (2,3) to host gaps, sin
e the elements ofthe �rst row and 
olumn (gap-mappings 
ontaining the index 0) in Eq. (5) di�er fromthe others in that they need not sum up to 1. Hen
e Eqs. (2,3) be
omesN1Xi=0 sij = 1; j = 1; : : : ; N2N2Xj=0 sij = 1; i = 1; : : : ; N1 (6)
4



where the �rst 
ondition 
an be rewritten asN1Xi=1 sij = 1 or N1Xi=1 sij = 0; j = 1; : : : ; N2 (7)The en
oding (sij) of mat
hes and gaps is illustrated in Fig. 1 with a simple example.
i

j

S0BBBBBBBBBBBB�
0 0 1 1 1 1 0 0 1 00 1 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 1 0 01 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCAFigure 1: A simple example of the assignment matrix S (right) 
orresponding to the mat
hing of thetwo toy 
hains (left).Assuming a 
onstant penalty per inserted gap one has the error fun
tionE = E
hain + N1Xi=1 �(1)i si0 + N2Xj=1�(2)j s0j (8)where �(1)i is the 
ost for mat
hing atom i in the �rst 
hain with a gap in the se
ond
hain, and similarly for �(2)j . The position dependen
e of the gap 
osts, �(1)i and �(2)j ,originates from the fa
t that it is desirable not to break �-helix and �-strand stru
tures.In Eq. (8) the gap penalties are proportional to gap lengths. In sequen
e alignment itis 
onje
tured that gap penalties 
onsist of two parts; a penalty for opening a gap andthen a penalty proportional to the gap length. As in Gerstein and Levitt (1996), wewill for stru
ture alignment here adopt the same gap 
ost philosophy, i.e. �(1)i and �(2)jfor opening a gap and a position-independent Æ per 
onse
utive gap. Hen
e, Eq. (8)generalizes to E = E
hain + N1Xi=1 �(1)i si0 + N2Xj=1�(2)j s0j+ N1Xi=2 �Æ � �(1)i � si�1;0si0 + N2Xj=2 �Æ � �(2)j � s0;j�1s0j (9)where produ
ts like si�1;0si0 are 1 if two adja
ent atoms are mat
hed to gaps.5



Minimization. Next we need an eÆ
ient pro
edure for minimizing E with respe
tto both sij and xi subje
t to the 
onstraints in Eqs. (6,7). As mentioned above, thisminimization problem is non-trivial due to the rigid body 
onstraint. A similar problemin terms of �tting stru
tures with relevan
e fa
tors was probed in Ohlsson et al. (1992)for tra
k �nding problems with a template approa
h using the mean �eld approximation.Here we will adopt a similar approa
h.In our formulation, the inherent optimization diÆ
ulty resides in the binary part (sij)of the problem. Hen
e, minimizing Eq. (9) using a simple updating rule for sij willvery likely yield poor solutions due to lo
al minima. Well known sto
hasti
 pro
eduressu
h as simulated annealing (SA) (Kirkpatri
k et al., 1983) for avoiding this are too
ostly from a 
omputational standpoint. In the mean �eld (MF) approa
h (Peterson &S�oderberg, 1989), the philosophy behind SA is retained, but the tedious simulations arerepla
ed by an eÆ
ient deterministi
 pro
ess. The binary variables sij are then repla
edby 
ontinuous mean �eld variables vij 2 [0; 1℄, with a dynami
s given by iterativelysolving the MF equations for a de
reasing set of temperatures T down to T0, where mostof the vij approa
h either 1 or 0. These 
ontinuous MF variables 
an evolve in a spa
enot a

essible to the original intermediate variables. The intermediate 
on�gurations atnon-zero T have a natural probabilisti
 interpretation.For sij satisfying Eq. (6), the MF equations for the 
orresponding vij readvij = euij=TN2Xk=0 euik=T ; i = 1; :::; N1 (10)where the for
e uij is given by uij = � �E�vij (11)and is 
omputed by substituting sij with vij in E (Eq. (9)). Note that the desirednormalization 
ondition, Eq. (6),N2Xj=0 vij = 1; i = 1; :::; N1 (12)is ful�lled automati
ally in Eq. (10). The other 
ondition (Eq.(7)) is enfor
ed by addinga penalty term E
 = 
 N2Xj=1[(N1Xi=1 vij)( N1Xk=1 vkj � 1)℄= 
 N1Xi=1 N1Xk 6=i N2Xj=1 vijvkj (13)
6



where 
 is a parameter and the last equality follows from the fa
t that v2ij = vij for T=0.So far we have only looked at the assignment part when minimizing the error fun
tion.When updating the mean �eld variables vij, using the MF equations, the distan
e mea-sure d2ij is a �xed quantity. This 
orresponds to having the 
hains at �xed positions.However, we also want to minimize the distan
e between the two 
hains. Based on theprobabilisti
 nature of the mean �eld variables we propose to update the 
hain positionsusing the (fuzzy) assignment matrix V, with elements vij. This is done simultaneouslywith the updating of vij. Expli
itly, one of the 
hains will be moved in order to minimizethe 
hain error fun
tion E
hain (Eq. (4)).The distan
e measure d2ij depends on the translation ve
tor a and the rotation matrixR,making a total of six independent variables. Let x0i be the 
oordinates of the translatedand rotated protein, i.e. x0i = a+Rxi, thenE
hain = N1Xi=1 N2Xj=1 vij (a+Rxi � yj)2 (14)This minimization problem 
an be solved exa
tly with 
losed-form expressions for Rand a that minimizes E
hain (Neumann, 1937). It should be noted that this solution isrotationally invariant (independent of R) for the spe
ial 
ase when the atoms in the two
hains mat
hes ea
h other with the same weight, i.e. when vij = 
onstant for all i andj, whi
h is the 
ase for high T .In summary, for a de
reasing set of temperatures T , one iterates until 
onvergen
e:1. The MF equations (Eq. (10)).2. Exa
t translation and rotation of the 
hain (Eq. (14)).We stress again that step 2 is done with the fuzzy MF assignment variables vij and notwith the binary ones, sij. After 
onvergen
e, vij are rounded o� to 0 or 1 and rms (root-mean-square-distan
e) is 
omputed for the mat
hing pairs. Algorithmi
 details 
an befound in the next subse
tion.The for
es uij entering Eq. (10) are proportional to d2ij (Eqs. (4,11)). It is the ratio d2ij=Tthat 
ounts. Hen
e, for large temperatures T , vij are fairly insensitive to dij and manypotential mat
hing pairs (i; j) 
ontribute fairly evenly. As the temperature is de
reased,a few pairs (the ones with small dij) are singled out and �nally at the lowest T onlyone winner remains. One 
an view the situation as that around ea
h atom i one has aGaussian domain of attra
tion, whi
h initially (large T ) has a large width, but graduallyshrinks to a small �nite value.The fuzziness of the approa
h is illustrated in Fig. 2, where the evolution of vij, as T islowered, is shown for parts of the �rst heli
es of 1ECD and 1MBD (see next se
tion)7



together with snap-shots of the 
orresponding 
hain se
tions. At high T all vij are similar;all potential mat
hes have equal probability. At lower T , several vij have approa
hed0 or 1 and the movable 
hain is moving in the right dire
tion. At yet lower T , notethat a few vij 
onverge later than the majority. These are in this example related to themat
hing of the last atom in one of the 
hains. This atom has two potential 
andidatesto mat
h resulting in a number of vij that 
onverge last.(a) (b)
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Figure 2: Illustration of the fuzziness of the approa
h. The alignment shown is for 10 atoms in the �rstheli
es in the proteins 1ECD (blue) and 1MBD (red). (a) Evolution of all the 120 vij as a fun
tion ofiteration time � (T is lowered with �). (b) Positions of the atoms at � = 1. For high T every atom ina protein feels all the atoms in the other protein and the problem is rotationally invariant. (
) � = 12;most of the relevant mat
hings are for
ing the system to move in the right dire
tion. (d) � = 50; the�nal assignments are done. The di�erent snapshots are presented using di�erent proje
tions. Some vijapproa
h 0 or 1 rather late and they are 
oloured green. These vij are related to the atom at the endof the 1MBD segment, whi
h also is 
oloured green, and as 
an be seen in (
) the diÆ
ulty is whetherto align this atom to the last or se
ond last atom in the 1ECD segment.
8



ImplementationHere we give a very 
ondensed, but yet self-
ontained and detailed des
ription of thealgorithm and the parameters involved, su
h that the results of this paper are repro-du
ible.Parameters. Two kind of parameters are used; the ones related to en
oding of theproblem (
) and iteration dynami
s (�), where � governs the annealing s
hedule (seebelow), and the ones spe
ifying gap 
osts (�, Æ). The same set of parameters 
an beused for most of the pairs (see Table 1); the algorithm is remarkably stable.Protein Family � 
 � �sheet �helix Æ�=�, all-� 0.8 0.065 0.10 1:5� 1:5� �=2Plasto
yanin/azurin 0.8 0.035 0.10 2:0� 2:0� �=5Immunoglobulins 0.8 0.040 0.15 2:0� 2:0� �=5Winged helix fold 0.8 0.070 0.20 2:0� 2:0� �=5Table 1: Parameters used in the algorithm. The �rst family involves 27 pairs, whereas the others oneea
h.Initialization. An initialization of the 
hains is made prior to the mean �eld alignment.First both 
hains are moved to their 
ommon 
enter of mass. For the random initializa-tion, this move is then followed by a random rotation of one of the 
hains. Most of thetimes, however, a sequential initialization is used that 
onsists of minimizing Eq. (4) us-ing a band-diagonal assignment matrix S. This 
orresponds to a situation where, on theaverage, atom i in one of the 
hains is mat
hed to atom i in the other. If not expli
itlymentioned, sequential initialization is used for all the protein pairs in this paper.Iteration Steps. The shortest 
hain is always 
hosen as the one that is moved (xi).The mean �eld variables vij are updated a

ording to Eq. (10) where, in order toimprove 
onvergen
e, the derivatives in Eq. (11) are repla
ed by �nite di�eren
es (seee.g. Ohlsson and Pi (1997)). This update equation a

ounts for all mean �eld variablesex
ept for the �rst row of V, whi
h is updated a

ording tov0j = 1� N1Xi=1 vij; j = 1; :::; N2 (15)The algorithmi
 steps are shown in Fig. 3. After 
onvergen
e, no post pro
essing isapplied for the results in the next se
tion. 9



1. Initialization.2. Res
ale 
oordinates su
h that the largest distan
e between atoms within the
hains is unity.3. Initiate all vij 
lose to 1=max(N1; N2) (randomly).4. Initiate the temperature (e.g. T = 2).5. Randomly (without repla
ement) sele
t one row, say row k.6. Update all vkj ; j = 0; :::; N2 a

ording to Eq. (10).7. Repeat items 5� 6 N1 times (su
h that all rows have been updated on
e).8. Repeat items 5� 7 until no 
hanges o

ur(de�ned e.g. by 1=(N1N2)Pij jvij � v(old)ij j � 0:0001).9. Rotation and translation of the shortest 
hain using the fuzzy assignment matrixV .10. De
rease the temperature, T ! �T .11. Repeat items 5� 10 until all vij are 
lose to 1 or 0(de�ned e.g. by 1=N1Pij v2ij � 0:99).12. Finally, the mean �eld solution is given by the integer limit of vij , i.e.for ea
h row i, i = 1; :::; N1 sele
t the 
olumn j� su
h that vij� is the largestelement for this row. Let sij� = 1 and all other sij = 0 for this row.Figure 3: Algorithmi
 steps.ResultsTo test the quality of our alignment algorithm, we have 
ompared alignments of proteinpairs with results from other automati
 pro
edures. For most of the tested pairs, ea
hprotein belongs to the same S
op superfamily. The goal here is not a full investigationof all families but rather to explore a limited set with representative variation. Pairs werepi
ked from a sele
tion of the families investigated in Gerstein and Levitt (1998). Our
hoi
e of pairs is essentially based on two 
riteria. First, the pairs should have diversestru
tures, and in parti
ular in
lude all-�, all-�, and �/� proteins. Se
ond, in Gersteinand Levitt (1998) some families are 
onsidered to be very easy, easy and diÆ
ult to align,respe
tively, and we in
luded pairs from all these 
ategories. In addition we have testedthe algorithm on 
ases where permutations are needed.Our results are 
ompared with the Yale Alignment Server (http://bioinfo.mbb.yale.edu/align/) and Dali (http://www2.ebi.a
.uk/dali/). The Yale server applies postpro
essing to its alignments by removing aligned pairs with too large root-mean-square-distan
e (rms) in an iterative manner subje
t to a termination 
riteria. A similar pro
e-10
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Figure 4: rms and N 
orresponding to Table 2. The Yale data 
orrespond to no post pro
essing (seetext).dure is of 
ourse possible in our approa
h, but we have 
hosen at this stage to keep thealgorithm 
lean. In the 
omparisons below we have for the Yale server quoted resultsboth before and after the post-pro
essing.Unless otherwise stated, proteins are in what follows denoted by their Pdb (Bermanet al., 2000) identi�er, and in the 
ase of 
hains or parts of 
hains with their S
opdomain label. A summary of the results in terms of rms and the number of alignedatoms (N) is shown in Table 2 and in Fig. 4. Detailed 
omments upon these results andsome additional ones 
an be found below.With regard to the general performan
e one must keep in mind that it is not straight-forward to assess alignment algorithms in terms of e.g. rms and N , sin
e there are noobvious �gure-of-merits. It is interesting to noti
e though that when inspe
ting aligned
ore regions in detail, we are 
lose to the Yale alignments but in general with a lowerrms. However, in su
h 
omparisons, we di�er more from Dali. The Yale algorithmhas been subje
t to 
omparison with S
op 
lassi�
ations using a multiple alignmentpro
edure (Gerstein & Levitt, 1998), giving its and our alignments a higher 
redibility.Dihydrofolate Redu
tases (�=�). These proteins belong to the S
op 
lass �=�, whi
h
ontains �- and �-proteins that have mainly parallel beta sheets. They are 
onsideredvery easy to align (Gerstein & Levitt, 1998). If we 
ompare alignments of 
ore stru
tureparts using the three methods we �nd that they all essentially agree. However, one notesthat the Yale results are very sensitive to the post pro
essing.11



Protein family Protein Pair Yale Dali Lundrms N rms N rms NDihydrofolate 1DHFa - 8DFR 1.7 (0.7) 182 (182) 0.7 182 0.7 182Redu
tases 1DHFa - 4DFRa 2.7 (1.2) 155 (130) 2.0 155 1.9 1541DHFa - 3DFR 2.5 (1.2) 159 (143) 1.7 158 1.7 1598DFR - 4DFRa 2.8 (1.3) 156 (131) 2.1 151 1.9 1548DFR - 3DFR 2.6 (1.3) 160 (146) 2.0 160 1.7 1604DFRa - 3DFR 2.4 (1.1) 157 (140) 1.5 152 1.5 153Globins 2HHBa - 2HHBb 2.3 (1.2 ) 139 (129) 1.5 139 1.4 1392HHBa - 2LHB 2.7 (1.6) 131 (123) 1.8 128 1.9 1302HHBa - 1MBD 2.4 (1.5) 141 (138) 1.5 139 1.5 1412HHBa - 2HBG 2.4 (0.8) 138 (105) 1.7 138 1.6 1372HHBa - 1MBA 2.9 (2.2) 138 (134) 2.3 136 2.2 1382HHBa - 1ECD 3.1 (2.2) 130 (126) 2.3 129 2.2 1302HHBb - 2LHB 2.5 (1.3) 136 (126) 1.7 134 1.6 1342HHBb - 1MBD 2.3 (1.4) 145 (138) 1.6 145 1.4 1432HHBb - 2HBG 2.4 (1.4) 136 (125) 2.0 135 1.6 1332HHBb - 1MBA 3.0 (2.2) 140 (137) 2.3 138 2.2 1392HHBb - 1ECD 2.8 (2.2) 136 (134) 2.3 129 2.1 1342LHB - 1MBD 2.4 (1.0) 137 (121) 1.4 135 1.4 1362LHB - 2HBG 2.7 (1.5) 131 (119) 2.0 128 2.1 1302LHB - 1MBA 2.7 (1.8) 138 (130) 1.9 135 1.9 1322LHB - 1ECD 2.7 (1.9) 130 (127) 2.0 128 1.9 1281MBD - 2HBG 2.5 (1.6) 139 (130) 2.1 139 1.8 1371MBD - 1MBA 2.5 (1.7) 143 (137) 1.9 142 1.8 1421MBD - 1ECD 2.2 (1.6) 136 (134) 1.9 136 1.6 1362HBG - 1MBA 2.9 (2.2) 139 (136) 2.4 137 2.2 1352HBG - 1ECD 3.3 (2.5) 128 (125) 2.6 129 2.4 1251MBA - 1ECD 2.8 (1.7) 134 (125) 1.9 133 1.9 135Plasto
yanin/azurin 1PLC - 1AZU 4.7 (2.9) 91 (85) 2.6 86 2.1 78Immunoglobulins 7FABl2 - 1REIa 3.5 (2.6) 83 (79) 2.6 78 3.0 89Table 2: The root-mean-square-distan
e (rms) and the number of aligned residues (N) from the align-ment of di�erent protein pairs. The results are presented for several automati
 alignment pro
edures;Lund refers to this work. For Yale the numbers within parenthesis refer to after post pro
essing (seetext).
Globins (all-�). In the all-� S
op 
lass we parti
ularly study a set of globin proteins.In general, we get lower rms than the other algorithms for the same number of alignedresidues. When 
omparing alignments from the three algorithms we �nd that an im-portant aspe
t of our algorithm is manifested { allowing for permutation of individualatoms. The reason for this is that to optimally align se
ondary stru
tures it is oftenbene�
ial to have a few permuted residues in loops between the se
ondary stru
tures.If we again 
ompare the 
ore parts of the alignments from the three algorithms we �ndthat they agree on a large fra
tion of the parts.12



Plasto
yanin/azurin (all-�). All-� proteins are diÆ
ult to align if one only takesba
kbone 
oordinates (C� or C�) into a

ount, even though using C� instead of C�
oordinates, in general, improves the results. As an initial example of all-� proteins wehave looked at plasto
yanin versus azurin. Even though this alignment is slightly morediÆ
ult than the previous 
ases, all three methods give similar rms and N and they allagree on the alignment of a majority of the 
ore parts. For this example several restartswere performed with random initialization.Immunoglobulins (all-�). A more diÆ
ult example of all-� proteins is immunoglob-ulins. We align the domain 7FABl2 with the 
hain 1REIa and �nd that we 
an �ndalignments with low rms that look good. However, if we investigate the alignment indetail we �nd that atoms in all 
ore regions, ex
ept one, are misaligned. This is alsothe 
ase in Gerstein and Levitt (1998), where the same alignment is investigated. Toget the 
ore regions 
orre
tly aligned in Gerstein and Levitt (1998) they improve theirmethod and take side 
hain orientation into a

ount. We expe
t that this is the 
asefor our method too. When aligning strands using only C� 
oordinates, strands in thetwo proteins are often mat
hed satisfyingly to one another while the individual atomsare aligned su
h that one strand is translated with respe
t to the other. It is thereforeobvious that side 
hain orientation is very important when aligning strands. For thisexample several restarts were performed with random initialization.Permuted proteins { winged helix fold. Finally we look at permuted versions ofsimilar folds. We 
ompare two DNA binding domains related to trans
ription regulation.The 
ompared domains both have the winged helix fold but one of them has the se
ondarystru
tures in a 
ir
ularly permuted order. This is a 
ase where iterative dynami
alprogramming algorithms will fail. We look at 1LEA and 
ompare it to the Entrez-Mmdb (Mar
hler-Bauer et al., 1999) stru
tural domain 4 in 
hain B of 1XGN. This partof 1XGN is 
lassi�ed as a 
ir
ularly permuted winged helix fold in S
op. In the Entrez-Mmdb database, whi
h usesVast (http://www.n
bi.nlm.nih.gov/Stru
ture/VAST/) foralignments, 1XGNb4 is listed as a low priority stru
tural neighbour to 1LEA, eventhough Vast does not allow for permutations of se
ondary stru
ture. If one looks atthe a
tual alignment one �nds that the permuted se
ondary stru
tures are not aligned.In Figure 5 we 
ompare our alignment with Vast. We show the sequential parts of ouralignment and in parti
ular all parts with se
ondary stru
ture are shown. Vast alignsonly 39 residues in this 
omparison, while we align 60. We note that we get all the 39of the aligned residues of Vast but that we in addition align the sheet at the end of1LEA with the sheet at the beginning of the domain in 1XGNb. This demonstratesthe importan
e of having a pro
edure that takes permutations into a

ount, whi
h ourmethod does. Otherwise, important similarities between protein stru
tures will not befound. For this example several restarts were performed with random initialization.
13



************** ******* ******************5 18 26 59 65 71| | | | | |1LEA TARQQEVFDLIRDH PTRAEIAQRLGFRSPNAAEEHLKALARKGVIEIV -GIRLLQE1XGNb4 VAQARFLLAKIKRE FAYRWLQN-D-M-PEGQLKLALKTLEKAGAIYGY IYMYVRDV| | | | | |216 229 235 265 206 212Figure 5: Alignment of 1LEA against the Entrez-Mmdb domain 1XGNb4. The '*' denotes atomsalso aligned by Vast. 1XGNb4 is a 
ir
ularly permuted version of 1LEA and our method �nds thisand aligns the sheet at the end of 1LEA with the sheet at the beginning of the domain in 1XGNb.Dis
ussionA new approa
h to stru
ture alignment has been presented and explored. It is basedupon an error fun
tion en
oding in terms of both binary assignment variables and real-valued atom 
oordinates. The en
oding allows for an extensive sear
h through all possiblealignments, in
luding the ones involving arbitrary permutations.The error fun
tion is eÆ
iently minimized using a mean �eld approximation of the assign-ment variables and exa
t translation/rotation of the atom 
oordinates. As a by-produ
tof this approximation, a probabilisti
 interpretation of the result is available withouttedious sto
hasti
 simulations. The approa
h is not sensitive to the 
hoi
e of distan
emetri
, and hen
e to a large extent ignores outliers.Despite some 
on
eptual similarities with the iterative dynami
al programming method(Gerstein & Levitt, 1996), our approa
h is probabilisti
 and more general. Also, andmaybe more importantly, it is quite di�erent sin
e permutations are allowed from theoutset. For the latter reason, the algorithm in Gerstein and Levitt (1996) 
annot bederived as a spe
ial 
ase in any limit.The method is readily extended to handle more detailed 
hain representations (e.g. side-
hain orientation) and user-provided 
onstraints of almost any kind.The approa
h is evaluated using pairs of protein 
hains 
hosen to represent a wide varietyof situations and the resulting alignments are su

essfully 
ompared with other methodsthat are available on WWW-servers. This evaluation is done using C�-representationsof the 
hains.Despite being very 
exible, generi
 and 
overing the entire spa
e of alignments themethod is on the average as fast as Gibrat et al. (1996), slightly slower than Gersteinand Levitt (1996) and signi�
antly faster than Holm and Sander (1993). Also, it is very14



robust with respe
t to the algorithmi
 parameters used with a few ex
eptions. On
eside-
hains are in
luded, the latter will disappear.A
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