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Abstract

A mean field feedback artificial neural network (ANN) algorithm is developed and explored for the set covering
problem. A convenient encoding of the inequality constraints is achieved by means of a multilinear penalty function. An
approximate energy minimum is obtained by iterating a set of mean field equations, in combination with annealing. The
approach is numerically tested against a set of publicly available test problems with sizes ranging up to 5 x 10° rows and
10° columns. When comparing the performance with exact results for sizes where these are available, the approach
yields results within a few percent from the optimal solutions. Comparisons with other approximate methods also come
out well, in particular given the very low CPU consumption required — typically a few seconds. Arbitrary problems can
be processed using the algorithm via a public domain server. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The set covering problem (SCP) is a well-
known NP-hard combinatorial optimization
problem, which represents many real-world re-
source allocation problems. Exact solutions can be
obtained by, e.g., a branch-and-bound approach
for modestly sized problems. For larger problems
various approximative schemes have been sug-
gested (see, e.g., [1,2]). In this paper we develop a
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novel approach based on feedback artificial neural
networks (ANN), derived from the mean field
approximation to the thermodynamics of spin
systems.

ANN is a computer paradigm that has gained a
lot of attention during the last 5-10 years. Most of
the activities have been directed towards feed-for-
ward architectures for pattern recognition or
function approximation. ANN, in particular
feedback networks, can also be used for difficult
combinatorial optimization problems (e.g., [6-11]).
Here ANN introduces a new method that, in
contrast to most existing search and heuristics
techniques, is not based on exploratory search to
find the optimal configuration. Rather, the neural
units find their way in a fuzzy manner through an
interpolating, continuous space towards good
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solutions. There is a close connection between
feedback ANN and spin systems in statistical
physics. Consequently, many mathematical tools
used for dealing with spin systems can be applied
to feedback ANN. Two steps are involved when
using ANN for combinatorial optimization:

1. Map the problem onto an energy function, e.g.,

E(S) :%ZWijsiSja (1)
ij

where & = {s;;i=1...N} is a set of binary
spin variables s; € {0, 1}, representing the ele-
mentary choices involved in minimizing E,
while the weights w;; encode the costs and
constraints.

2. To find configurations with low E, iterate the
mean field (MF) equations

oot /(e (FE))

where T is a fictitious temperature while 7~ =

{v:}, where v; € [0,1] represents the thermal

average (s;),, and allows for a probabilistic in-

terpretation.

Egs. (1) and (2) only represent one example.
More elaborate encodings have been considered,
e.g., based on Potts spins allowing for more gen-
eral basic decisions elements than simple binary
ones [17]. A propagator formalism based on Potts
neurons has been developed for handling topo-
logical complications in, e.g., routing problems
[7,10].

The ANN approach for SCP that we develop
here differs from the one that was successfully used
for the somewhat related knapsack problem in
[13,14], in particular with respect to encoding the
constraints. Whereas a non-linear step-function
was used in [13,14], we will here use a multilinear
penalty, which in addition to being theoretically
more appealing, also appears to be very efficient.
Furthermore, an automatic procedure for setting
the relevant T-scale is devised.

The algorithm is extensively tested against a set
of publicly available benchmark problems [15]
with sizes (rows X columns) ranging from 200 x
1000 to 5000 x 10°. The approach yields results,
typically within a few percent from the exact op-

timal solutions, for sizes where these are available.
Comparisons with other approximate methods
also come out well. The algorithm is extremely
rapid — the typical CPU demand is only a few
seconds (on a 400 MHz Pentium II).

A public domain WWW server has been set up,
where arbitrary problems can be solved interac-
tively.

This paper is organized as follows: In Section 2
we define the SCP, and in Section 3 we describe its
encoding in terms of a neural network energy
function and discuss the MF treatment. Section 4
contains numerical explorations and comparisons.
A brief summary is given in Section 5. Appendices
A and B contain a derivation of the mean field
equations, and some algorithmic implementation
issues, respectively. Tables from the numerical
explorations are found in Appendix C, while Ap-
pendix D contains pointers and instructions for
the WWW server. It should be stressed that this
paper is self-contained — no prior knowledge of
feedback neural networks or the MF approxima-
tion is necessary.

2. The set covering problem

The SCP is the problem of finding a subset of
the columns of an M x N zero—one matrix

A={ay€{0,1}; k=1,....M; i=1,...,N}

that covers all rows at a minimum cost, based on a
set of column costs {¢;;i=1,...,N}. SCP is con-
veniently described using a set of binary variables,
S ={s;€{0,1};i=1,...,N}. More precisely,
SCP is defined as follows:

N

Minimize CiSiy (3)
=1
N

subject to Z%&?l, k=1,...,M, 4)
i=1

with s; €40, 1}, i=1,...,N. (5)

Eq. (4) states that at least one column must cover a
particular row. The special case where all costs ¢;
are equal is called the unicost SCP. There is sub-
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class of SCPs that has a nice graphical inter-
pretation: If the zero—one matrix 4 has the prop-
erty that each row contains exactly two 1’s then we
can interpret A as the vertex-edge matrix of a
graph with N vertices and M edges. The unicost
SCP is then a vertex covering problem, where the
task is to find the minimal number of vertices that
covers all edges of the graph. SCPs (including
weighted vertex covering) are NP-hard combina-
torial optimization problems. If the inequalities of
Eq. (4) are replaced by equalities, one has the set
partition problem (SPP). Both SCP and SPP have
numerous resource allocation applications.
The following quantities will be used later:

. 1
Density: p= N %:ak;, (6)
R M
Column sums: N, = Zak,-, (7)
T
. N
Row sums: M; = Zak, (8)

3. The mean field approach
3.1. The energy function for SCP

We start by mapping the SCP of Egs. (3)-(5)
onto a spin energy function E(&) (step 1 in
Section 1):

N M N
E(&¥) = Zc,—s,— + ocz
=1 =

=

(1 — ags;). 9)

1

1

The first term yields the total cost and the second
one represents the covering constraint of Eq. (4) by
imposing a penalty if a row is not covered by any
column.

The constraint term is a multilinear polynomial
in the spin variables s;, i.e., it is a linear combi-
nation of products sys, - - - s¢ of distinct spins. This
is attractive from a theoretical point of view, and
the differentiability of E enables a more quantita-
tive analysis of the dynamics of the MF algorithm.

An alternative would be to implement the in-
equality constraints using a piecewise linear func-
tion [14],

O‘Z(f)(l —Zakfsi> (10)

with ¢(x) =xO(x) =x if x >0 and 0 otherwise.
This yields a non-differentiable energy function
and generally an inferior performance as com-
pared to the polynomial representation (9).

3.2. The statistical mechanics framework

The next step is to minimize £(.%). Using some
local updating rule, e.g., s; — —s; if the corre-
sponding change in energy is negative, will most
often yield a local minimum close to the starting
point, with poor solutions as a result. Simulated
annealing (SA) [9] is one way of escaping from
local minima since it allows for uphill moves in E.
In SA a sequence of configurations . is generated
according to a stochastic algorithm, such as to
emulate the probability distribution

e—E&)/T

P(¥) = S, e EIT (11)
where the sum runs over all possible configura-
tions .%’. The parameter T (temperature) acts as a
noise parameter. For large T the system will fluc-
tuate heavily since P(%) is very flat. For the SCP
this implies that the sequence contains mostly poor
and infeasible solutions. On the other hand, for a
small 7, P(%) will be narrow, and the sequence
will be strongly dependent upon the initial con-
figuration and contain configurations only from a
small neighborhood around the initial point. In
SA one generates configurations while lowering 7'
(annealing), thereby diminishing the risk of ending
up in a suboptimal local minimum. This is quite
CPU-consuming, since one has to generate many
configurations for each temperature following
a careful annealing schedule (typically 7; = T,/
log(1 + k) for some Tp) in order to be certain to
find the global minimum.

In the MF approach the costly stochastic SA is
approximated by a deterministic process. MF also
contains an annealing procedure. The original bi-
nary variables s; are replaced by continuous MF
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variables v; € [0, 1], with a dynamics given by it-
eratively solving of the MF equations for each T.

An additional advantage of the MF approach is
that the continuous MF variables can evolve in a
space not accessible to the original variables. The
intermediate configurations at non-zero 7 have a
natural probabilistic interpretation.

3.3. MF theory equations

Our objective is now to minimize E using the
MF method. The binary spin variables s; are re-
placed by MF variables v;, representing solutions
to the MF equations (a derivation of these is given
in Appendix A).

v = 1/(1 + exp <1TAEi(”I/<i))>),

i=1,...,N, (12)
where
AE(70) = E(10, 5, = 1) — E(#"0, 5, = 0)

_ oF /o, (13)

The set 7" denotes the complementary set
{v;,j #i}. From Eq. (9) we get

— aZak,H akjvj (14)

k=1 J#

A (19) =

The MF equations are solved iteratively while
annealing in 7. It should be noted that the equa-
tion for v; does not contain any feedback, i.e., no
explicit dependence on v; itself. This yields a
smooth convergence, and it is usually only neces-
sary with a few iterations at each value of 7. What
remains to be specified are the parameters o and 7.
The latter will be discussed next and we return to
the choice of o in connection with the numerical
explorations in Section 4.

3.4. Critical temperatures

In the limit of high temperatures, 7' — oo, the
MF variables {v;} will, under the dynamics defined

by iteration of Eq. (12), converge to a trivial
symmetric fixed point with v; = 1/(1 4 exp(0)) =1,
corresponding to no decision taken. At a finite but
high T, the corresponding fixed point will typically
deviate slightly from the symmetric point.

For many problems, a bifurcation occurs (in-
dicative of a transition from a disordered phase to
an ordered one) at a critical temperature 7;, where
the trivial fixed point loses stability and other fixed
points emerge, which as 7' — 0 converge towards
definitive candidate solutions to the problem, in
terms of v; € {0, 1}. For some problems, a cascade
of bifurcations occur, each at a distinct critical
temperature, but in the typical case there is a single
bifurcation.

It is then of interest to estimate the position of
T, which defines a suitable starting point for the
MF algorithm. Such an estimate can be obtained
by means of a linear stability analysis for the dy-
namics close to the fixed point. For the special case
of a symmetric unicost SCP with constant row and
column sums for the matrix 4, T, can be found as
the largest eigenvalue of the matrix

2PN (5, — 1) Zak,ak] (15)

Estimation of the largest eigenvalue gives
T, ~ ap*M27*N, (16)

where p is defined in (6).

For non-unicost problems, 7, is harder to esti-
mate, and there might even be no bifurcation at
all. For such problems, a suitable initial 7" is in-
stead determined by means of a fast preliminary
run of the algorithm (see below).

4. Numerical explorations
4.1. Implementation details

The annealing schedule for 7 and the value of
the constraint parameter o have to be determined
before we can run the algorithm. The former is
accomplished by a geometric decrease of 7:

T;+1 :kT;v (17)



M. Ohlisson et al. | European Journal of Operational Research 133 (2001) 583-595 587

where k is set to 0.80 and 7, is determined by a
fast prerun of the algorithm (see below). The
parameter k determines how fast the temperature
is lowered. Too rapid decrease of T will result in
poor solutions and the value 0.80 was found
(numerically) to be a good compromise be-
tween speed and solution quality. The number of
iterations of Egs. (12) for each value of T is not
fixed; T is lowered only when all v; have
converged.

In order to ensure a valid solution at low 7,
the size of the constraint term in Eq. (14) must be
larger than the largest cost ¢,y that is part of the
solution. Using a too large o will however reduce
the solution quality since E is then dominated by
the covering constraint. Our choice of « therefore
depends on ¢y, Ideally, M/(pM)=1/p col-
umns would suffice to cover each row of A. If
we further optimistically assume that the 1/p
smallest costs can be chosen for the solution,
cmax can easily be found. However, for most
problems we need more than 1/p columns, which
makes it difficult to estimate cp,, except for
unicost problems where all column costs are
equal.

To determine (an approximate) cy.x for a non-
unicost SCP, we perform a fast prerun with a
smaller annealing factor £ = 0.65, and with « =
1.01. From this prerun one can also obtain an
estimate of the critical temperature 7, as the T
where the saturation (defined below) deviates from
0. The second run is then initated at 7, = 27T,
thereby avoiding unnecessary updates of v; at high
T. This procedure for setting o also requires re-
scaling of the costs; for all problems we set
¢; — ¢;/ max;(c;). See Table 1 for a summary of
the parameters used. The evolution of the MF
variables {v;} is conveniently monitored by the
saturation X,

Table 1
Summary of the parameters k, o and T, used in the algorithm

Unicost SCP Non-unicost SCP

Prerun Second run
k 0.80 0.65 0.8
o 0.5 1.01 1.05 % ¢}
Ty 50 50 2% T,

%Z (v — 1/2). (18)

i=1

A completely “undecided” configuration, X =0,
means that every v; has the value 1/2. During the
annealing process, as each v; approaches either 1
or 0, X converges to 1. The transition between
2 =0 and X =1 is usually smooth for a generic
SCP. However, when a bifurcation is encountered
(see above), 2~ can change abruptly; this occurs,
e.g., for unicost SCP where there is no natural
ordering among the costs {c;}.

Fig. 1 shows the evolution of the MF variables
{v;} and the saturation X for the problems 4.1
and CYC. 9 (see Appendix C, Tables 3 and 4); the
latter is a unicost problem, and as can be seen from
Fig. 1b, it clearly exhibits a bifurcation.

A summary of the algorithm can be found in
Appendix B, while Appendix D gives the address
of and instructions for a WWW server, where the
MF algorithm is applied to user-defined SCPs.

4.2. Numerical results

The performance of the algorithm is evaluated
using 16 problem sets found in the OR-Library
benchmark database [15]. These 16 sets consist of
91 problems, out of which 19 are unicost SCP. The
algorithm is coded in C and the computations are
done on a 400 MHz Pentium II PC. The details of
the OR-library problems are given in Table 3 and
our results can be found in Tables 4-6 in Appendix
C. The optimal or currently best known values are
taken from Refs. [1-3,5,8,12].

For each of the test SCPs, 10 trials of our al-
gorithm are performed. In Tables 4-6, the best and
the average costs are listed for each problem. For
10 of the problems our method found the optimal
solution. The MF results are typically within a few
percent of the optimal solutions, as can be seen in
Table 2. Large relative deviations from optimum
are seen in the unicost CLR problems (see Ap-
pendix C, Tables 3 and 6), which appear to be
difficult for our approach. However, the optimal
(integer) costs for these problems are low (23-26);
this gives a large effect on the relative deviations
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Fig. 1. Evolution of the MF variables v; as T is lowered for 4. 1 (a) and CYC
the number of iterations is intentionally large for visualization purposes.

Table 2

Mean relative deviation from the optimal (or best known) solution and normalized CPU times for the MF method and

approaches®

100

lterations

200

300

. 9 (b), respectively. Also shown is X (Eq. (18)). Note that

other

Problem set

Rel. deviation (%)

(Normalized) CPU Time

MF GA R-Gr  Alt-Gr BB LH MF GA R-Gr  Alt-Gr BB LH
4 2.1 0 - - - - 1 11 - - - -
5 2.7 0.09 - - - - 1 3.6 - - - -
6 3.5 0 - - - - 1 3.9 - - - -
A 2.2 0 - - - - 1 4.6 - - - -
B 1.1 0 - - - - 1 29 - - - -
C 1.7 0 - - - - 1 3.9 - - - -
D 2.9 0 - - - - 1 2.5 - - - -
NRE 3.5 0 - - - - 1 1.1 - - - -
NRF 4.4 0 - - - - 1 0.32 - - - -
NRG 3.1 0 - - - - 1 3.4 - - - -
NRH 2.0 0 - - - - 1 2.5 - - - -
Rail 2.0 - - - - 2.0 1 - - - - 3.7
Unicost problems
E 0 - 0 0 - - 1 - b b - -
CYC 6.8 - 13 3.0 - - 1 - 10 0.21 - -
CLR 16 - 13 22 - - 1 - 0.98 0.57 - -
STS 2.5 - - - 0 - 1 - - - 810 -

#The results for the genetic algorithm (GA) are taken from [2]. R-Gr and Alt-Gr are greedy heuristics algorithms from [5]. BB is a

branch and bound algorithm and LH is a Lagrangian based heuristic, with results taken from [12,3], respectively.

®The CPU times reported for these problems was 0.0 and a comparison is therefore not possible.

even for a small change in the found costs. De-
creasing the obtained costs by unity will change
the mean relative deviation from 16% to 10%. It is

also important to notice that we use a common set
of algorithm parameters (,k,Ty) for all unicost
problems, without any parameter optimization for
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Problem set Rows Columns Density Number of ones per row Number of problems
(M) (N) (%) [max-min-ave]
4 200 1000 2 36-8-20 10
5 ” 2000 2 60-21-40 ”
6 ” 1000 5 71-29-50 5
A 300 3000 2 81-38-60 ”
B ” ” 5 191-114-150 ”
C 400 4000 2 105-56-80 ”
D ” ” 5 244-159-200 ”
NRE 500 5000 10 561-444-499 ”
NRF ” ” 20 1086-914-999 ”
NRG 1000 10000 2 258-153-199 ”
NRH ” ” 5 580-436-499 ”
Rail.507 507 63009 1.3 7753-1-807 1
Rail.516 516 47311 1.3 7805-1-610 ”
Rail.582 582 55515 1.2 8919-1-690 ”
Rail.2536 2536 1081841 0.40 86666-1-4335 ”
Rail.2586 2586 920683 0.34 72553-1-3097 ”
Rail.4284 4284 1092610 0.24 56181-1-2633 ”
Rail 4872 4872 968672 0.20 69708-1-1897 ”
Unicost problems
E 50 500 20 124-77-100 5
CYC.6 240 192 2.1 4-4-4 1
CYC.7 672 448 0.9 ” ”
CYC.8 1792 1024 0.4 ” ”
CYC.9 4608 2304 0.2 ” ”
CYC.10 11520 5120 0.08 ” ”
CYC.11 28160 11264 0.04 ” ”
CRL.10 511 210 12 126-10-26 ”
CRL.11 1023 330 ” 210-20-41 ”
CRL.12 2047 495 ” 330-30-62 ”
CRL.13 4095 715 ” 495-50-89 ”
STS.45 330 45 6.7 3-3-3 ”
STS.81 1080 81 3.7 ” ”
STS.135 3015 135 22 ” ”
STS.243 9801 243 1.2 ” ”

#The density refers to the percentage of ones in the 4 matrix.

®The maximum, minimum and average of ones per row is taken over all problems in each set.

each problem. Another set of parameters might be
more advantageous for the CLR problems.

In our implementation of the MF algorithm,
the time 7 for a complete update of all variables
{v;} scales approximately linearly with the number
of non-zero entries in A4,

T ox NMp. (19)

This appealing property is feasible due to efficient
calculations of AE; in Eq. (14) that utilizes the

sparse nature of 4. For the total solution time, t
should be multiplied by the number of iterations
needed — empirically around 100, independently of
problem size. Fig. 2 shows the mean solution time
versus NMp.

Compared to other heuristic approaches, ours
does not find the optimal cost as often as, e.g., the
genetic algorithm [2]. It is however very competi-
tive with respect to speed. Table 2 shows a more
detailed comparison with the genetic algorithm. In
order to compare CPU times for different com-
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Fig. 2. Solution time in seconds, referring to a Pentium II 400 MHz computer, as function of the number of non-zero entries in the
problem matrix 4. Left and right figure shows non-unicost and unicost SCP, respectively. The rail problems are not shown since a
slightly different implementation is used for these problems (see Appendix B for details).

puters we have used the Linpack benchmark [4] as
a reference. In Ref. [5] nine different approxima-
tion algorithms were tested on a large number of
unicost problems (including the set considered
here); our approach is comparable to the top ones
in both performance and speed (see Table 2).

It is worth noting that for one of the small Rail
problems (Rail. 516) we found a cover with the
cost 186, which is smaller than the lower bound
reported in [3].

5. Summary

We have developed a MF feedback neural
network approach for solving SCPs. The method
is applied to a standard set of benchmark prob-
lems available in the OR-library database. The
method is also implemented in a public WWW
server.

The inequality constraints involved are conve-
niently handled by means of a multi-linear penalty
function that fits nicely into the MF framework.
The bifurcation structure of the MF dynamics
involved in the neural network approach is ana-
lyzed by means of a linearized dynamics. A simple

and self-contained derivation of the MF equations
is provided.

High quality solutions are consistently found
throughout a range of problem sizes ranging up to
5 x 10% rows and 10° columns for the OR-library
problems without having to fine-tune the param-
eters, with a time consumption scaling as the
number of non-zero matrix elements. The ap-
proach is extremely efficient, typically requiring a
few seconds on a Pentium II 400 MHz computer.

The MF approach to SCP can easily be modi-
fied to apply to the related, and more constrained,
set partitioning problem. One simply has to re-
place the inequality constraint term with one that
handles the equality constraint present in the set
partitioning problem.
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Appendix A. Mean field approximation

Here follows for completeness a derivation of
the MF equations (see, e.g., [16]). Let E(¥) be an
energy function of a set of binary decision vari-
ables (spins) & = {s;|s; € {0,1}, i=1,...,N}. If
we assume a Boltzmann probability distribution
for the spins, the average (s;), will be given by

_ X, sexp (- E(2)/7) Al

S e BT

where the sums run over all possible configura-
tions . We can manipulate this expression to
obtain,

Zs»:o.l i eXp (7E(,V(i),s;)/T)
Zf/ eXp (_ E(y)/T) Z.vl-f(),l exp (—E(,V‘(i) ,Si)/T)

> exp (= E(S)/T) ’
(A.2)

(si)r =

where & denotes the set {s;, j # i} of all spins
but s;. If we now perform the sums over s; in the
numerator, we get

oy, = S0 BN e
Y e CE)/T)

~( e ), (A3)

where

(A4)

So far there are no approximations, the expression
for (s;), has just been rewritten. Eq. (A.3) states
that the expectation value of s; is equal to the ex-
pectation value of a nonlinear function f of all the
other spins. The mean field approximation consists
of approximating the expectation value (f(%"))
by f({#")). With v; denoting (s;), and 7" the
complementary set {v;, j# i}, this amounts to
making the replacement

1
< 1 +exp (AE, () /T) >T
1
T T+exp (AE(V)/T)
in Eq. (A.3).

(A.5)

lems

dated once)

(e.g. T > (N —0.5)/N)

1. Rescale all weights such that ¢; € [0,1] j=1,...,N

2. Initiate all v;’s close to 0.5
(v; € [0.499,0.501] uniformly random)

3. Set a = 1.05 ¢ypaz, or a = 0.5 for unicost problems

4. Set the temperature T = 27T,, or T' = 50 for unicost prob-

5. Randomly (without replacement) select one variable vy,
6. Update v according to Eq. (12)

7. Repeat points 5.-6. N times (so that all v; have been up-

8. Repeat points 5.-7. until no changes occur
(e.g. defined by 1/N Zjv lvj — 1)§0[d)| <0.01)

9. Decrease the temperature, T — 0.807
10. Repeat 5-9 until ¥ (Eq. (18)) is close to 1

11. Finally, the mean field solution is given by setting
sj =1if v; > 0.5 and s; = 0 otherwise, j =1,..., N

Fig. 3. Implementation details of the MF algorithm for SCPs.
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This results in a set of self-consistency equa- which in general must be solved numerically, e.g.,
tions for ¥~, the MF equations by iteration.
1 The MF approximation often becomes exact in

Ui = 1+ exp (AEi(V(i))/T) , i=1..,N, (A6 the limit of infinite range interactions where each

Table 4
Results for problems 4-D (see Table 3)*
Problem Optimal value Best MF solution Average MF solution Solution time
in 10 trials over 10 trials

4.1 429 435 435.6 0.44
4.2 512 517 518.0 0.49
4.3 516 531 532.7 0.45
4.4 494 512 520.9 0.48
4.5 512 522 524.1 0.46
4.6 560 566 567.8 0.44
4.7 430 446 446.0 0.45
4.8 492 492 493.8 0.46
4.9 641 658 661.4 0.47
4.10 514 521 521.0 0.45
5.1 253 260 268.6 0.87
5.2 302 316 316.0 0.83
5.3 226 229 229.0 0.86
5.4 242 247 247.5 0.86
5.5 211 214 214.3 0.83
5.6 213 213 213.2 0.82
5.7 293 304 305.0 0.86
5.8 288 299 300.1 0.90
5.9 279 281 281.0 0.82
5.10 265 273 274.0 0.83
6.1 138 143 143.0 0.63
6.2 146 153 153.2 0.62
6.3 145 150 150.2 0.60
6.4 131 132 133.1 0.62
6.5 161 169 169.8 0.62
Al 253 260 261.5 1.5
A2 252 257 258.3 1.5
A3 232 238 241.3 1.5
A4 234 238 239.7 1.5
A5 236 238 238.9 1.4
B.1 69 70 71.2 22
B.2 76 77 77.6 2.3
B.3 80 83 83.7 22
B4 79 80 80.0 2.3
B.5 72 72 72.0 23
C.1 227 233 233.6 2.2
C2 219 222 2243 22
C3 243 249 251.1 2.3
C4 219 220 220.1 23
C.S5 215 219 219.1 2.2
D.1 60 64 64.6 3.7
D.2 66 66 66.3 3.8
D.3 72 73 75.1 3.9
D4 62 63 63.0 3.8
D.5 61 64 64.6 3.8

#Solution time refers to 400 MHz Pentium IT CPU seconds and includes the prerun for non-unicost problems.
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spin variable interacts with all the others. This
can be seen from AE;(#") which then becomes a
sum of many (approximately) independent ran-
dom numbers, and a central limit theory can be
applied.

Appendix B. Algorithm details

Here follows a summary of the MF annealing
algorithm for finding approximate solutions to
SCPs. The procedure presented below is used for
all problems in this study except for the large rail
problems where numerical problems caused by
limited machine precision comes into play. The
problem arises when calculating the product in
Eq. (14), which for large problems can contain

many factors. A work-around is implemented by a
simple truncation,

0 if v; < 0.05,
V; = . (Bl)
v; otherwise.

This numerical fix is only used when calculating
the AE;(7"") in Eq. (14).

Algorithmic outline of our approach is shown
in Fig. 3.

Appendix C. Benchmark results

The outline of this appendix is as follows:
Table 3 lists the properties of each problem set in
terms of size, density of ones in the 4 matrix, rows

Table 5
Results for problems NRE-Rail (see Table 3)*
Problem Current best value Best MF solution Average MF solution Solution time
in 10 trials over 10 trials

NRE.1 29 29 29.5 9.8
NRE.2 30 32 32.1 9.8
NRE.3 27 28 28.2 9.7
NRE 4 28 29 29.7 9.8
NRE.5 28 29 29.0 9.8
NRF.1 14 14 14.9 19
NRF.2 15 15 15.4 18
NRF.3 14 15 15.2 19
NRF 4 14 15 15.4 19
NRF.5 13 14 14.7 19
NRG.1 176 180 180.1 10
NRG.2 155 157 159.0 10
NRG.3 166 173 174.9 10
NRG .4 168 175 176.3 10
NRG.5 168 175 176.9 11
NRH.1 64 65 66.4 21
NRH.2 64 66 67.0 21
NRH.3 59 62 62.8 20
NRH.4 58 60 61.8 21
NRH.5 55 56 56.4 21
Rail.507 174 187 188.2 37
Rail.516 211 186 187.9 26
Rail.582 182 222 225.5 32
Rail.2536 691 737 740.0 1100
Rail.2586 951 1018 1026.7 830
Rail 4284 1065 1152 1162.1 1100
Rail 4872 1534 1640 1643.5 1050

#Solution time refers to 400 MHz Pentium II CPU seconds and includes the prerun for non-unicost problems. The notation current

best value may for some instances mean optimal value.
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Table 6
Results for the unicost problems E — STS (see Table 3)*

Problem Current best value Best MF solution Average MF solution Solution time
in 10 trials over 10 trials
E.1 5 5 5.3 0.15
E.2 5 5 5.0 0.14
E3 5 5 5.0 0.15
E4 5 5 5.0 0.14
E.5 5 5 5.0 0.16
CYC.6 60 62 63.0 0.08
CYC.7 144 151 153.4 0.20
CYC.8 344 348 352.1 0.62
CYCJ9 780 829 832.6 1.6
CYC.10 1792 1870 1882.3 3.9
CYC.11 4103 4240 4248.7 9.6
CLR.10 25 27 29.0 0.36
CLR.11 23 26 28.9 1.0
CLR.12 26 30 30.9 32
CLR.13 26 31 329 10
STS.45 30 31 31.8 0.03
STS.81 61 63 63.9 0.11
STS.135 104 105 107.4 0.32
STS.243 202 205 206.8 1.1

#Solution time refers to 400 MHz Pentium II CPU seconds. The notation current best value may for some instances mean optimal

value.

sums and finally the number of sub-problems in
each set. Tables 4-6 contain the results found us-
ing our algorithm on each of the sub-problems in
each problem set.

Appendix D. WWW server

A program executing the MF algorithm for
set covering problems as presented in this paper
can be publicly used by means of a World Wide
Web server. A user can interactively submit a file
defining an instance of SCP, and obtain the
found solution. The URL of the WWW server
is:

http://www.thep.lu.se/complex/

mf_server.html

An instance of SCP is defined by specifying the
costs ¢; and the matrix 4. Two formats, row and
column ordering, are supported for the file that
lists ¢; and the none-zero entries of A; they are
defined as follows:

Row ordering

M N

Ci1Cy...CN

M, space separated list of all non-zero entries for
row 1

M,  space separated list of all non-zero entries for
row 2

M,  space separated list of all non-zero entries
for row M

Column ordering

M N

¢ N space separated list of all non-zero entries
for column 1

¢2 N, space separated list of all non-zero entries
for column 2

ey Ny space separated list of all non-zero entries
for column N

The column sums N; and row sums M, are de-
fined in Egs. (7) and (8). As an example, consider
the SCP instance defined by
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ol
Il

(172737475)7 A:

S = O =
S = = O
—_—0 O =
—_— o = O
— i O

(D.1)

for which the column and row ordering formats
read

Row ordering Column ordering

45 45

12345 1213
3135 2223
224 3214
3125 4224
3345 53134

The solver returns the found cost (energy) E
(Eq. (3)), together with a characterization of the
problem. Upon request, a file that lists the col-
umns used in the solution is also provided.

There is a limitation (B) on the size of the
problems that can be submitted to the server. In-
stances of SCP with MNp > B will not be consid-
ered. Presently B, which is limited by the available
memory of the server, is given by 3 x 10°.
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