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Abstract:
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1 Introduction

This paper concerns methods and results in making predictions for two test problems
(A and B) given by ”The Great Energy Predictor Shootout - The First Building Data
Analysis and Prediction Competition” [1]. The present approach scored # 1 on set
B and # 2 on set A. Both problems were given to the contestants in terms of tables
of historic data (dependent and independent variables). In approaching the two data
sets a few different strategies were explored. The most powerful approach for these
applications turned out to be based on the following two key ingredients:

e Prior determination of dependencies in the data by using the é-test [2].

e Feedforward Artificial Neural Networks (ANN) for model building (system iden-
tification).

This approach is of “black box” nature. However, it is stressed that prior “expert”
knowledge about holidays etc. is essential for good performance.

This paper is organized as follows. In sections 2 and 3 we very briefly review the
d-test approach and ANN method, respectively, with slightly more emphasis on the
former, given that it may not be as well known in the community as ANN. The results
for data set A and B are discussed in sections 4 and 5. Section 6 contains a brief
summary.

2 The 6-test

The behavior of a system is often modeled by analyzing a time series record of certain
system variables. Using ANN to model such systems recently has attracted much
attention. The success of such models relies heavily upon identifying the underlying
structure in the time series — it is advantageous to know in advance the embedding
dimension, which inputs are most relevant, noise level, etc. Existing methods for
doing this are based either on linear regression, which limits the analysis to linear
dependencies, or on trial-and-error procedures. The §-test [2], to be briefly described
below, aims at determining any dependency, be it linear or nonlinear, assuming an
underlying continuous function.

Assume that we have sequences of measurements on a dependent variable zo and
a set of independent variables z;, z,...2,,. These measurements can correspond to
multivariate time series, or to a univariate time series, in which case z; should be
understood as a time lagged variable of zg: zx(t) = zo(t — k). The question is whether
there exist functional dependencies of the form

20 = f(z1,22, .00y 2m) + 7 (1)

where r represents an indeterminable part, which originates either from insufficient
dimensionality of the measurements or from real noise. If the system is completely



deterministic in terms of the set of independent variables one has » = 0. In the case of
a univariate time series, the dimension d,,;, = m + 1, which is sufficient to minimize
r, is called the minimum embedding dimension.

We approach the problem by constructing conditional probabilities in embedding
spaces of various dimensions d. The time series can be represented as a series of N
points z(z) in a (d + 1)-dimensional space (d =0,1,2,...)

Z(IL) = (Zo(’i), zl(i)7 ) zk(i)7 ) zd(l)) (2)
In terms of distances lx(z,7) between the k:th components of two vectors z(i) and

2(7)

one can construct the conditional probabilities
. R
Py(e|b) = P(ly < €|l < 6) = ——— , 4
a(€[8) = P(lo < €|l < §) (< & (4)

where € and § are positive numbers and n(fﬁ g) and n(ly <, fﬁ g) are the number
of vector pairs satisfying the corresponding distance constraints®. How does the prob-
ability structure of the dependent variable behave with respect to the independent
variables? In ref. [2] the following important observations were made:

1. For a completely random time series there is no dependency and one has

Po(€) = Pi(e|§) = ... = Py(e| §) = ... (5)

This identity, which should be understood in a statistical sense, holds for any
choice of positive € and 6.

2. If a continuous map exists as in eq. (1) with no intrinsic noise, then for any € > 0
there exists a 8. such that

Py(e|§)=1 for §<6. and d>do (6)

where dy represents some minimum dimension which covers all the relevant vari-
ables. This is a direct consequence of the definition of function uniform continu-

ity,
3. In the presence of noise r, Py(¢| 5) will no longer saturate to 1 as € becomes
smaller than the width Ar,,,, of the noise.

The behavior of Py(¢| 5) as a function of § and ¢ for various d are shown schematically
in fig. 1. The consequences of randomness (eq. (5)) and complete determination
(eq. (6)) provides a yardstick with which to measure the degree of dependency between
the variables. Interesting quantities to examine are the maxima

Py(€) = max Py(e| §) = Pa(€| 6)|s<s.- (7)

6 The notation ff & is short for {(I1 €8),(l2 <8),....,(la < 8)}.
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Figure 1: (a). Py(e|d) as a function of é for fixed e. Saturation to 1 would be observed

—

if the width of noise is less than €. (b). Behavior of the maxima Py(e) = maxsso Py(e| 6)
as a function of e. The region saturating to 1 would be pushed toward smaller € if the
d:th conditional variable is relevant. The point €¢g at which the saturation deviates from
1 can be identified approximately as the width of the noise Arpq. ~ €.

How Py(€) changes with d and € provides basically all the information we need (see
fig. 1b). To quantify the dependency on each of the variables, it is convenient to
define a dependability index

Jo~ de(Pa(e) = Paa(e))
1= de(1= Bole)) d=1,2,...

In general 1 > Xd_z 0, while Ag =1 (or S g = 1) signals a completely deterministic
relationship and Ag ~ 0 singles out irrelevant variables’.

Ad = (8)

Constructing statistical quantities out of pairs of points is an efficient utilization of
available statistics (N(N —1)/2 pairs out of N points). Nevertheless, limited statistics
can be problematic, especially if noise levels are high. Statistical errors are estimated

7One should keep in mind however that these conditions are only necessary but not sufficient.



as
> Py(1 - P,
APy(e|§) =2 M (9)
n(l < 8)
This expression is not entirely adequate for correlated data, but it serves the purpose
to signal the onset of statistically unreliable regions. In case statistics are at a pre-
mium an option is often utilized such that a variable k& once identified as irrelevant
1s set enactive , which means that the condition [ < § is omitted when computing

Py(e|8) for d > k. This option cuts down the loss of statistics due to unnecessarily
restrictive conditions.

3 Feedforward ANN for System Identification

Feedforward ANN have turned out to be a very powerful approach for classification
problems. A general introduction to the subject can be found in ref. [4]. Recently also
system identification problems have been approached with these nonlinear techniques.
The aim is to realize a function mapping F; from the input values z; to the output
values y;. For the so-called Multilayer Perceptron (MLP) [3] a particular form of the
function F; is chosen

yi = Fi(z1,22,...) = ¢ (Zwéjg(ﬁk:wjkmk)) (10)

which corresponds to the feed-forward architecture of fig. 2. The parameters to be
fitted are the “weights” wj; and wj;. The “transfer function” g is often chosen as
g(z) « tanh(z). The input nodes could be either lagged outputs (e.g. y(¢t — 1),

Yi

Figure 2: A one hidden layer feed-forward neural network architecture.

y(t — 2),..) or other independent variables at time ¢. The hidden layer enables the



network to handle non-linear dependencies with threshold behavior given by g(z). In
eq. (10) and fig. 2 one hidden layer is assumed. The architecture can of course be
generalized to any number of hidden layers. Fitting to a given data set (or “learning”)
takes place with gradient descent on e.g. a summed square error

=Y (5 ) (11)

i

with respect to the weights w]; and wji, where ¢; are the desired (true) output values.
This is done by presenting all the training patterns repeatedly with successive
adjustments of the weights. Once this iterative learning has reached an acceptable
level in terms of a low error E, the weights are frozen and the ANN is ready to be
used on patterns it has never seen before. The capability of the network to correctly
reproduce the mapping of these test patterns is called generalization performance.
In the context of utility prediction the training patterns are historic data and the test
patterns represent the independent variables in the prediction part.

This MLP functional expansion contains linear modeling as a special case (linear
output and no hidden nodes). It differs, however, from polynomial fittings where
each additional power introduced implies a new dimension in an orthonormal space.
With few training patterns this might give rise to “overfitting” with degradation
in generalization performance. This phenomenon has been observed for the present
data. In contrast, adding additional hidden nodes in the MLP sigmoidal expansion
does not necessarily “open up” new dimensions — additional hidden nodes may well
duplicate the task of existing ones.

The training phase is often terminated before the global minimum of the error (eq. (11))
has been reached, in order to increase the generalization performance. This is most
easily done by monitoring the error on a validation set (a subset of the training
data which is not used in the training) and stop the training when this error stops
decreasing.

An alternative method is to use a recurrent network [5] that is capable of building
an internal memory of time lagged states by using feedback structures. However, the
exact nature of these time lagged states is difficult to analyze and there is no evidence
that those states always provide optimum time lags for solving the problems at hand.

When comparing MLP with recurrent networks the former requires preprocessing
in terms of choosing appropriately time-lagged inputs while the latter approach is
supposed to select the relevant time-lags dynamically. With the é-test in our hands
the appropriate time-lags can be efficiently selected for MLP processing. We find
that with such cautious choice of input representation, the MLP always outperforms
recurrent networks. Hence from now on we will stick to the MLP.

An additional bonus of the é-test is that the residual errors (eq. (11)) can be analyzed
in terms of dependency on the input variables: With appropriate choice of input
representations and an efficient learning procedure, there should be no such residual
dependencies.



4 Data Set A

4.1 General Properties of Data

This set represents real world data taken hourly during Sept. - Dec. 1989. The task
is to predict y(¢) for the subsequent period of Jan. - Feb. 1990 from the known
measurements on Z(t), where

y1 = whole building electric (WBE) power consumption (kW)
y» = whole building cold water (WBCW) consumption (10° Btu/hr)
y3 = whole building hot water (WBHW) consumption (10° Btu/hr)

z; = wind speed (miles/hr)

zy = solar flux (W/m?)

r3 = humidity ratio (water/dry air)
z4 = temperature (°F)

zs = hour

The corresponding dates are also provided. The Christmas holiday is extended and
the building seems to have been “shut down” on the 23:rd of December when the
power consumption decreases suddenly and sharp transients appear in the water
consumptions. This presents a complication when fitting the data since it occurs
towards the end of the training set and the transfer to “normal” running (assuming
that it is only a temporary state) takes place in January, which is part of the unknown
test set. In order to account for this and other possible seasonal behavior we identify
the weekdays and holidays (Thanksgiving, Christmas-New Year) and introduce two
new variables

zg = weekday
z7 = day-code

where the weekday takes values ranging from 1 to 7 for Monday through Sunday, and
the day-code is +1 if it is a working day and —1 for a weekend day or a holiday. For
the WBE power consumption, which shows clear seasonal effects within a week cycle
and before and after holidays, we code weekday as a “Sunday” if it happens to be
a holiday, and the two working days immediately preceding a holiday are coded as
“Thursday” and “Friday” respectively. Furthermore, the day-code is given a value of
—2 for the Christmas recess (Dec. 23 - Jan. 1) and is decreased from its normal value
by 0.4 for the first week in September, January and immediately before Christmas.
It 1s also decreased from its normal value by 0.2 for the second week in September,
January and before Christmas.

This additional encoding of information (ze,z7), constitutes a heuristic departure
from the pure “black box” strategy. This encoding is necessary to enable the network



to recognize the different patterns on holidays. If the building is a commercial build-
ing, with people working inside, one can imagine that the code gives information on
the number of people working the first week after a long holiday, on the last working
day before a holiday, etc.. Ideally, this information should be available to the modeller
in the form of statistics of working hours.

In the test set one finds the President’s Day (20 Feb. 1990), which causes an ambiguity
since even though it is an officially observed holiday it may be ignored by e.g. certain
university campus buildings like sport halls. We have chosen not to treat it as a
holiday. Making a wrong assumption here can change the CV and MBE values
(see section 4.4) by roughly 5 % for the power consumption and 1 % for the water
consumptions.

4.2 Variable Dependencies

The functions y(t) = F(Z(t)), which are determined from variables at the same time
step only, are said to have a horizontal dependency only. In cases where there are
dependencies upon the history of variables one has vertical (time lag) dependencies.
Prior to fitting the data with an ANN we used the §-test extensively to investigate
these dependency structures.

Data Set A (WBE)
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Figure 3: (a): Dependency indices Ag for y3 (WBE) on z4 (d = 1), z3 (d = 2), z;
(d=3),z2 (d=4),25 (d=5), 11t —1) (d=6), y1(t —2) (d=7), y21(¢ —3) (d = 7) and
y1(t — 4) (d = 8). (b): The probability P4(e) as a function of € for various d as marked
on the curves.



All three consumption variables (power, hot and cold water) exhibit strong depen-
dencies on z, (solar flux). The water consumptions also show large dependencies on
temperature whereas the power consumption appears to depend largely on the com-
bination of temperature and humidity. As an example the dependability indices for
the power consumption variable are shown in fig. 3a. Clearly the first seven variables
listed in the figure can be regarded as relevant. In particular the 1-lag variable y;(t—1)
i1s a very important one, while time lags beyond three can be discarded. It is also
interesting to estimate the noise level with this set of variables. It is seen on fig. 3b
that P;(e€) starts to deviate from 1 at €9 ~ 0.4 (c.f. fig. 1b). Assuming a Gaussian dis-
tribution for the noise, its standard deviation can be estimated as o, &~ €,/3.6 = 0.11.
Since the € in fig. 3b is given in unit of the standard deviation o of the WBE series,
this means that the mean error one may achieve is 0.11¢0. Given that o = 149 and the
mean = 686 for the WBE data we used, the mean error translates into a C'V = 0.024
(see eq. (13)), a number comparable with the actual error we get out of an MLP.

4.3 MLP Architecture and Parameters

For the WBE prediction we use an MLP with 7 hidden sigmoidal units, one linear
output unit and 13 inputs;

Z(t) = (yi(t—1),y1(t —2),21(¢), z2(t), z3(t), z4(t), sin(wes(t)/12), cos(mzs(t)/12),
sin(mze(t)/7), cos(mze(t)/7), z7(t), z7(t — 24), z-(t + 24))

where the last three inputs correspond to the day-codes for today, yesterday and
tomorrow respectively.

For the WBCW prediction we use an MLP with 11 hidden sigmoidal units, one linear
output unit and 20 inputs;

HE) = (ualt — 1), 22(8), 22(t), (t), (), 21(6 — 1), 2a(t — 1) za(t — 1), 2alt — 1),
z1(t — 2), z2(t — 2), z3(t — 2), za(t — 2), sin(wzs(t)/12), cos(mas(t)/12),
sin(mze(t)/7), cos(mze(t)/T7), z7(t), z7(t — 24), z-(t + 24))

Finally, for the WBHW prediction we use an MLP with 7 hidden sigmoidal units,

one linear output unit and 13 inputs;

#(t) = (ys(t —1),ys(t —2),21(¢), @
t

, s o(t), 3(t), za(t), z2(t — 1), sin(mz5(t)/12),
cos(mas(t)/12),7 — we(t), z(t

), z7(t — 24), z7(t + 24))

All input values are normalized to the interval [0,1]. Standard backpropagation, as
implemented in JETNET 2.0 [6], is used with initial weights randomly distributed in
the interval [-0.1,0.1]. The learning rate and momentum term are set to 0.1 and 0.0
respectively. The gradient is sampled over 20 randomly selected patterns for each
weight update.



4.4 Results

The data set includes a total of 4208 time steps (hours). The last 1282 time steps make
up the test set, in which the independent variables Z(¢) are given whereas the energy
consumptions y{(t) were withheld by the organizers [1]. We thus have at our disposal
the data patterns [1,2926] that can be used to train the networks. The accuracy in
predicting the unknowns in the test set [2927,4208] is used by the organizers to score
the generalization performances.

We use the usual mean squared error (MSE)

¥ 2000~ 3(0)’ (12)

to gauge the network performances. Since the previous signal value y(¢t — 1) is used
as input in all three cases, two types of errors are to be distinguished: One can make
predictions based on true y(¢ — 1) values whenever these are available. The resultant
error is then called the single step error (S-MSE). Alternatively, one can use the
predicted values of y iteratively to make further predictions by feeding the predicted
output back as an input. The resultant error is called the multi-step error (M-MSE).
The iterative approach is used for making predictions in the test set.

The networks are trained in two stages:

1. First a sample of 500 time steps [801,1300] are reserved from the training set
to form a validation set. The networks are trained on the remaining 2426 data
points. The multi-step errors are monitored and the network giving the best M-
MSE on the validation set is picked out. We then make preliminary predictions
for the time steps [2927,4208] based on the best network found.

2. In the second stage we train the network on the entire training set (including
the 500 time steps previously reserved), with the condition that the new pre-
dictions may not drift too far from the preliminary predictions. Specifically we
define a mean squared deviation (MSD) between the preliminary and the new
predictions, and we finally choose the network which minimizes a weighted sum
of M-MSE on training set and M-MSD on the testing set.

We find that in the stage 1 training the best M-MSE selected by the validation process
does not always correspond to the best M-MSE for the entire training set. The stage
2 “fine tuning” process ensures that we do not get a solution that misrepresents the
500 reserved patterns badly.

The mean squared errors from the best networks achieved are summarized in table 1.

The organizers have defined the coeflicient of variation (CV) and the mean bias error



Stage I Stage II
Data Set Learning Validation || Training MSD
(1-800,1301-2926) | (801-1300) | (1-2926) | (2927-4208)

WBE S-MSE 228.3 152.3 203.0 5.43
M-MSE 881.9 381.3 726.8 61.15
WBCW S-MSE 0.030 0.034 0.030 0.0009
M-MSE 0.163 0.092 0.128 0.015
WBHW S-MSE 0.047 0.038 0.045 0.0002
M-MSE 0.121 0.056 0.100 0.0044

Table 1: The mean squared errors for single step (S-MSE) and multi-step (M-MSE) predictions for
various data sets at the stage I and stage II of the network training. The last column (MSD) is the
deviation of the stage II predictions from the preliminary stage I predictions.

(MBE) as the following

1[1 X Y2
S OO I
MBE = 0 (9(t) - v(t) (13)

where y(t) = the true value of the signal, y(¢) = the predicted value, and ¥ = the
average of the true value. Our results for these two error measures on the training
set and the test set are given in table 2.

Training Set Test Set
Ccv MBE Ccv MBE
S. Step | M. Step S. Step M. Step M. Step | M. Step

WBE 0.0215 | 0.0407 | —3.25 x 107* | —1.26 x 1075 || 0.1178 0.105
WBCW | 0.0345 | 0.0705 | —7.55 x 10~* | —4.86 x 1073 || 0.1296 | —0.0595
WBHW | 0.1010 | 0.1512 | —3.08 x 10~* | —1.70 x 1073 || 0.3063 | —0.2733

Table 2: The coefficient of variations (CV) and the mean bias errors (MBE) for the single step and
multi-step predictions, and for the training and test set, respectively.

In figs. 46 we show the comparison between the (multi-step) predictions and the
true values. The bottom plot in each figure are for the test sets in which the true
values became known only after the predictions were made, and demonstrate the
true generalization performance of the networks. Fig. 7 shows the predicted energy
consumptions as functions of the temperature.

10
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Figure 4: Predicted WBE consumption (the full lines) compared with data (the points).
The residues (Prediction — Data) are shown in broken lines. (a) and (b) are for the
training set (time steps 1 to 2926), and (c) is for the test set (time steps 2927 to 4208).

4.5 Validation of the Result

As mentioned above, the §-test can be used to check whether the network has learned
its task properly by applying the test on the residual error. If the amount of noise
resulting from the é-test equals the standard deviation of the residue signal, then it
is very likely that the prediction is the best possible prediction (apart from minor
differences between different networks). We stress however that the §-test is based on
true data values and therefore has direct relevance only to the single step prediction
task.

The results from testing the single step residues indicate that for WBE and WBCW
consumptions our networks have pretty much reached their limits for learning the

11



8 717
= ]
< =

5 6
= C
m C
«© 4 — o
o C ° ]
~— | - —
= 2E i [ (a) —
O C i & ! ‘ A ]
m C ;\\ QW I ‘ ! i A A
= 0 o “ M\ y 5’ w,’-“"‘\uﬁ;’\‘»‘ » V‘ W n\“ ‘M “m“ ‘u" u,-\,\ ”o'n’\ﬂ(’ i, ,ﬂ V\ ,Hw s w0 \ e L,m‘\‘i“\‘ ‘1‘-’\“:“‘;\”1 “'.“u‘\,q,’.“.‘»"f“."\“ .r*'i‘?"'\l
C_1 \ 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 1 1 1 1 " 1 ‘ 1 1 1 T
0] 250 500 750 1000 1250
= ; -
- 8 \ \ \ \ \ —]
= C ]
Q C ]
= 6 & 4 -
et ]
M 3
© 4 = m
o C ]
— C ]
= R~ : b =
5 E T ‘\ﬁ(/“” s ( ) "L » I N 3
= 0 o 'r’\"v ) ('~ M \" \‘r‘\' o, "‘“‘ Py L TN Y \“”U\Wb ,L " ‘w (“’\ i i ;””\ NI 1 P e
] e iy ' y "
C 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 ‘ 1 1 1 1 ‘ 1 1 [
1500 1750 2000 2250 2500 2750
o
<
~.
=
=
m
©
o
~—
=
O
faay v ) ‘
= 0r e e I i «\/{«r Ay \A, o ’r"'““'\ N, \‘\\.,,,M,
c n 1 i F1 M 1 1 1 1 ‘ 1 \ 1 U\) ‘ \ 1 1 1 1
3500 3750 4000 4250

Hourly steps
Figure 5: Predicted WBCW consumption plotted together with the data and the residues.

The notations are the same as in fig. 4.

tasks, while for WBHW there may still be room for some improvement. However we
find that for WBHW the best single step error does not necessarily correspond to the
best multi-step error. Since the latter is most relevant for this prediction task, we
choose to ignore the signal of the é-test and accept the network solution.

5 Data Set B

5.1 General Properties of Data

This set consists of 3344 solar radiation measurements during a sixth month period
(August - May). The task is to predict y(Z) where

12
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Figure 6: Predicted WBHW consumption plotted together with the data and the
residues. The notations are the same as in fig. 4.

y =true beam insolation

z; = decimal date (Julian day + hour/24)
z, = Horizontal solar flux (W/m?)

z3 = South-East solar flux (W/m?)

z4 = South solar flux (W/m?)

z5 = South-West solar flux (W/m?)

From a physics point of view it would be natural if the horizontal, south and total
solar flux variables were all peeked around noon. However, visual inspection of the
data according to the description is not consistent with this. Since the notation of
the input values is irrelevant for the results, we stick to the “shootout” labels in our

13
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description and calculations.

5.2 Variable Dependencies

The solar flux has an obviously stronger dependency on the hour than on the (Julian)
day and we therefore split the decimal date column into a day and an hour column.
Results from applying the §-test [2] on this data set are shown in fig. 8. The y variable
has dependencies on the four angled measures of solar flux as well as on the hour, as
seen in fig. 8a. However if the variables are reordered so that the hour is entered the
last, as shown in fig. 8c, one sees that the hour does not provide information that is
extra to the four solar flux variables. This suggests that if a model is properly built
upon the angled solar flux measures there may be no need for an explicit dependency
on the hour. There appears to be no dependency on the (Julian) day either. A
striking feature is that the sum of indices gives 0.998 in either fig. 8a or fig. 8c, nearly
saturating to 1, which suggests a high deterministic relationship. This is in contrast
to the data set A (fig. 3) where the sum of the indices yields 0.92 and a relatively large

14



Data set B
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Figure 8: (a): Dependency indices Ay for y (true beam insolation) on the independent
variables. (b): The probability Py(e) as a function of € for the same set of variables in
(a); d is marked on the curves. (c) and (d): The same as in (a) and (b) but for a different
ordering of variables.

noise level is found. From fig. 8b (or fig. 8d) we read ¢ ~ 0.03, and the noise level
o, ~ €/3.6 = 0.0083. Multiplying by the standard deviation/mean ratio (316/381)

of the y data set, the noise would correspond to an error measure CV ~ 0.007.

5.3 ANN Method

Given that there exists a function that fully determines the total solar flux we at-
tempted some different ANN architectures to approximate it. First we used a small
subset of the training data as a validation set to monitor the performance. It turned
out that the error on the validation set always decreased with the error on the training
set and that there is no need to use a validation set. We consequently chose to use the
whole training set for training. The ANN architecture that gave the best performance
1s a standard MLP with 2 hidden layers, a single output unit and 7 inputs, where the
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inputs are

= (@q, z3, T4, ©5, day, cos( hour), sin( hour)).

8y

We use no time-lagged inputs since the §-test suggests that the function is well de-
termined by just using horizontal variables. All input values are normalized to the
interval [0,1] and the output value is scaled by a factor of 1300. Initial weights are
randomly distributed in the interval [—0.3,0.3]. During learning weights are updated
after presentation of every 10 randomly selected patterns. All the calculations have
been done using the F77 package JETNET 2.0 [6]. A Langevin updating scheme (see
e.g. ref [7]) was used as it often performs better than backpropagation.

5.4 Results

In fig. (9) a scatter plot is shown of true and predicted beam insolation for the training
data, with a variation coefficient CV = 0.019 and a mean bias error MBE = —0.00032.
Note that the CV achieved by the network is reasonably close to the rough estimate
of the 8-test. For the test data (a set of data in which the answers were withheld by
the organizers), the error measures give CV = 0.027 and MBE = 0.0017.
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Figure 9: Scatter plot showing predicted beam insolation versus true beam insolation for
the training data of set B.
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5.5 Validation of the Result

Applying the é-test to the residue € from the training set gives

~

e = G(day, cos(hour),sin(hour), vy, ...,v5) + 7 , (14)

where the noise level 4y ~ stddev(e). This implies that another network trained on
the residue signal will only be able to learn within an error of about one standard
deviation, which is no improvement. We hence conclude that our prediction is good
enough.

6 Summary

We have approached the two data sets provided in “The Great Energy Predictor
Shootout - The First Building Data Analysis and Prediction Competition” [1] with
an almost “black-box” procedure based upon

o The é-test for establishing dependencies and gauging network performance.

e A Multilayer Perceptron (MLP) [3] for modeling historic data.

When selecting the appropriate ANN architecture and learning algorithm the choices
are a standard MLP and/or a recurrent network [5]. The former requires preprocessing
in terms of choosing appropriately time-lagged inputs whereas the latter approach is
supposed to select the relevant time-lags dynamically. With the é-test in our hands
the appropriate time-lags can be efficiently selected for MLP processing.

It should be stressed that some “expert” knowledge of holiday structure etc. is needed
for peak performance in data set A.
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