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1 IntroductionThis paper concerns methods and results in making predictions for two test problems(A and B) given by "The Great Energy Predictor Shootout - The First Building DataAnalysis and Prediction Competition" [1]. The present approach scored # 1 on setB and # 2 on set A. Both problems were given to the contestants in terms of tablesof historic data (dependent and independent variables). In approaching the two datasets a few di�erent strategies were explored. The most powerful approach for theseapplications turned out to be based on the following two key ingredients:� Prior determination of dependencies in the data by using the �-test [2].� Feedforward Arti�cial Neural Networks (ANN) for model building (system iden-ti�cation).This approach is of \black box" nature. However, it is stressed that prior \expert"knowledge about holidays etc. is essential for good performance.This paper is organized as follows. In sections 2 and 3 we very brie
y review the�-test approach and ANN method, respectively, with slightly more emphasis on theformer, given that it may not be as well known in the community as ANN. The resultsfor data set A and B are discussed in sections 4 and 5. Section 6 contains a briefsummary.2 The �-testThe behavior of a system is often modeled by analyzing a time series record of certainsystem variables. Using ANN to model such systems recently has attracted muchattention. The success of such models relies heavily upon identifying the underlyingstructure in the time series { it is advantageous to know in advance the embeddingdimension, which inputs are most relevant, noise level, etc. Existing methods fordoing this are based either on linear regression, which limits the analysis to lineardependencies, or on trial-and-error procedures. The �-test [2], to be brie
y describedbelow, aims at determining any dependency, be it linear or nonlinear, assuming anunderlying continuous function.Assume that we have sequences of measurements on a dependent variable z0 anda set of independent variables z1, z2,...zm. These measurements can correspond tomultivariate time series, or to a univariate time series, in which case zk should beunderstood as a time lagged variable of z0: zk(t) = z0(t� k). The question is whetherthere exist functional dependencies of the formz0 = f(z1; z2; :::; zm) + r (1)where r represents an indeterminable part, which originates either from insu�cientdimensionality of the measurements or from real noise. If the system is completely1



deterministic in terms of the set of independent variables one has r = 0. In the case ofa univariate time series, the dimension dmin = m+ 1, which is su�cient to minimizer, is called the minimum embedding dimension.We approach the problem by constructing conditional probabilities in embeddingspaces of various dimensions d. The time series can be represented as a series of Npoints z(i) in a (d+ 1)-dimensional space (d = 0; 1; 2; :::)z(i) = (z0(i); z1(i); ::; zk(i); :; zd(i)): (2)In terms of distances lk(i; j) between the k:th components of two vectors z(i) andz(j) lk(i; j) = jzk(i)� zk(j)j; k = 0; 1; :::; d (3)one can construct the conditional probabilitiesPd(�j~�) � P (l0 � �j~l � ~�) = n(l0 � �;~l � ~�)n(~l � ~�) ; (4)where � and � are positive numbers and n(~l � ~�) and n(l0 � �;~l � ~�) are the numberof vector pairs satisfying the corresponding distance constraints6. How does the prob-ability structure of the dependent variable behave with respect to the independentvariables? In ref. [2] the following important observations were made:1. For a completely random time series there is no dependency and one hasP0(�) = P1(�j~�) = ::: = Pd(�j~�) = ::: (5)This identity, which should be understood in a statistical sense, holds for anychoice of positive � and �.2. If a continuous map exists as in eq. (1) with no intrinsic noise, then for any � > 0there exists a �� such thatPd(�j~�) = 1 for � � �� and d � d0 (6)where d0 represents some minimum dimension which covers all the relevant vari-ables. This is a direct consequence of the de�nition of function uniform continu-ity,3. In the presence of noise r, Pd(�j~�) will no longer saturate to 1 as � becomessmaller than the width �rmax of the noise.The behavior of Pd(�j~�) as a function of � and � for various d are shown schematicallyin �g. 1. The consequences of randomness (eq. (5)) and complete determination(eq. (6)) provides a yardstick with which to measure the degree of dependency betweenthe variables. Interesting quantities to examine are the maximaPd(�) � max�>0 Pd(�j~�) = Pd(�j~�)j����: (7)6The notation ~l � ~� is short for f(l1 � �); (l2 � �); :::; (ld � �)g.2



Figure 1: (a). Pd(�j~�) as a function of � for �xed �. Saturation to 1 would be observedif the width of noise is less than �. (b). Behavior of the maxima Pd(�) � max�>0 Pd(�j~�)as a function of �. The region saturating to 1 would be pushed toward smaller � if thed:th conditional variable is relevant. The point �0 at which the saturation deviates from1 can be identi�ed approximately as the width of the noise �rmax � �0.How Pd(�) changes with d and � provides basically all the information we need (see�g. 1b). To quantify the dependency on each of the variables, it is convenient tode�ne a dependability index�d = R10 d� (Pd(�)� Pd�1(�))R10 d� (1 � P0(�)) ; d = 1; 2; ::: (8)In general 1 � �d � 0, while �d = 1 (or P�d = 1) signals a completely deterministicrelationship and �d � 0 singles out irrelevant variables7.Constructing statistical quantities out of pairs of points is an e�cient utilization ofavailable statistics (N(N�1)=2 pairs out of N points). Nevertheless, limited statisticscan be problematic, especially if noise levels are high. Statistical errors are estimated7One should keep in mind however that these conditions are only necessary but not su�cient.3



as �Pd(�j~�) = 2vuutPd(1 � Pd)n(~l � ~�) : (9)This expression is not entirely adequate for correlated data, but it serves the purposeto signal the onset of statistically unreliable regions. In case statistics are at a pre-mium an option is often utilized such that a variable k once identi�ed as irrelevantis set inactive , which means that the condition lk � � is omitted when computingPd(�j~�) for d > k. This option cuts down the loss of statistics due to unnecessarilyrestrictive conditions.3 Feedforward ANN for System Identi�cationFeedforward ANN have turned out to be a very powerful approach for classi�cationproblems. A general introduction to the subject can be found in ref. [4]. Recently alsosystem identi�cation problems have been approached with these nonlinear techniques.The aim is to realize a function mapping Fi from the input values xk to the outputvalues yi. For the so-called Multilayer Perceptron (MLP) [3] a particular form of thefunction Fi is chosenyi = Fi(x1; x2; :::) = g 0@Xj !0ijg(Xk !jkxk)1A (10)which corresponds to the feed-forward architecture of �g. 2. The parameters to be�tted are the \weights" !0ij and !jk. The \transfer function" g is often chosen asg(x) / tanh(x). The input nodes could be either lagged outputs (e.g. y(t � 1),
wjkw0ij xkhj
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Figure 2: A one hidden layer feed-forward neural network architecture.y(t � 2),..) or other independent variables at time t. The hidden layer enables the4



network to handle non-linear dependencies with threshold behavior given by g(x). Ineq. (10) and �g. 2 one hidden layer is assumed. The architecture can of course begeneralized to any number of hidden layers. Fitting to a given data set (or \learning")takes place with gradient descent on e.g. a summed square errorE = 12Xi (yi � ti)2 (11)with respect to the weights !0ij and !jk, where ti are the desired (true) output values.This is done by presenting all the training patterns repeatedly with successiveadjustments of the weights. Once this iterative learning has reached an acceptablelevel in terms of a low error E, the weights are frozen and the ANN is ready to beused on patterns it has never seen before. The capability of the network to correctlyreproduce the mapping of these test patterns is called generalization performance.In the context of utility prediction the training patterns are historic data and the testpatterns represent the independent variables in the prediction part.This MLP functional expansion contains linear modeling as a special case (linearoutput and no hidden nodes). It di�ers, however, from polynomial �ttings whereeach additional power introduced implies a new dimension in an orthonormal space.With few training patterns this might give rise to \over�tting" with degradationin generalization performance. This phenomenon has been observed for the presentdata. In contrast, adding additional hidden nodes in the MLP sigmoidal expansiondoes not necessarily \open up" new dimensions { additional hidden nodes may wellduplicate the task of existing ones.The training phase is often terminated before the global minimum of the error (eq. (11))has been reached, in order to increase the generalization performance. This is mosteasily done by monitoring the error on a validation set (a subset of the trainingdata which is not used in the training) and stop the training when this error stopsdecreasing.An alternative method is to use a recurrent network [5] that is capable of buildingan internal memory of time lagged states by using feedback structures. However, theexact nature of these time lagged states is di�cult to analyze and there is no evidencethat those states always provide optimum time lags for solving the problems at hand.When comparing MLP with recurrent networks the former requires preprocessingin terms of choosing appropriately time-lagged inputs while the latter approach issupposed to select the relevant time-lags dynamically. With the �-test in our handsthe appropriate time-lags can be e�ciently selected for MLP processing. We �ndthat with such cautious choice of input representation, the MLP always outperformsrecurrent networks. Hence from now on we will stick to the MLP.An additional bonus of the �-test is that the residual errors (eq. (11)) can be analyzedin terms of dependency on the input variables: With appropriate choice of inputrepresentations and an e�cient learning procedure, there should be no such residualdependencies. 5



4 Data Set A4.1 General Properties of DataThis set represents real world data taken hourly during Sept. - Dec. 1989. The taskis to predict ~y(t) for the subsequent period of Jan. - Feb. 1990 from the knownmeasurements on ~x(t), wherey1 = whole building electric (WBE) power consumption (kW)y2 = whole building cold water (WBCW) consumption (106 Btu/hr)y3 = whole building hot water (WBHW) consumption (106 Btu/hr)x1 = wind speed (miles/hr)x2 = solar 
ux (W/m2)x3 = humidity ratio (water/dry air)x4 = temperature (�F)x5 = hourThe corresponding dates are also provided. The Christmas holiday is extended andthe building seems to have been \shut down" on the 23:rd of December when thepower consumption decreases suddenly and sharp transients appear in the waterconsumptions. This presents a complication when �tting the data since it occurstowards the end of the training set and the transfer to \normal" running (assumingthat it is only a temporary state) takes place in January, which is part of the unknowntest set. In order to account for this and other possible seasonal behavior we identifythe weekdays and holidays (Thanksgiving, Christmas-New Year) and introduce twonew variablesx6 = weekdayx7 = day-codewhere the weekday takes values ranging from 1 to 7 for Monday through Sunday, andthe day-code is +1 if it is a working day and �1 for a weekend day or a holiday. Forthe WBE power consumption, which shows clear seasonal e�ects within a week cycleand before and after holidays, we code weekday as a \Sunday" if it happens to bea holiday, and the two working days immediately preceding a holiday are coded as\Thursday" and \Friday" respectively. Furthermore, the day-code is given a value of�2 for the Christmas recess (Dec. 23 - Jan. 1) and is decreased from its normal valueby 0.4 for the �rst week in September, January and immediately before Christmas.It is also decreased from its normal value by 0.2 for the second week in September,January and before Christmas.This additional encoding of information (x6; x7), constitutes a heuristic departurefrom the pure \black box" strategy. This encoding is necessary to enable the network6



to recognize the di�erent patterns on holidays. If the building is a commercial build-ing, with people working inside, one can imagine that the code gives information onthe number of people working the �rst week after a long holiday, on the last workingday before a holiday, etc.. Ideally, this information should be available to the modellerin the form of statistics of working hours.In the test set one �nds the President's Day (20 Feb. 1990), which causes an ambiguitysince even though it is an o�cially observed holiday it may be ignored by e.g. certainuniversity campus buildings like sport halls. We have chosen not to treat it as aholiday. Making a wrong assumption here can change the CV and MBE values(see section 4.4) by roughly 5 % for the power consumption and 1 % for the waterconsumptions.4.2 Variable DependenciesThe functions ~y(t) = F (~x(t)), which are determined from variables at the same timestep only, are said to have a horizontal dependency only. In cases where there aredependencies upon the history of variables one has vertical (time lag) dependencies.Prior to �tting the data with an ANN we used the �-test extensively to investigatethese dependency structures.
Figure 3: (a): Dependency indices �d for y1 (WBE) on x4 (d = 1), x3 (d = 2), x1(d = 3), x2 (d = 4), x5 (d = 5), y1(t� 1) (d = 6), y1(t� 2) (d = 7), y1(t� 3) (d = 7) andy1(t � 4) (d = 8). (b): The probability Pd(�) as a function of � for various d as markedon the curves. 7



All three consumption variables (power, hot and cold water) exhibit strong depen-dencies on x2 (solar 
ux). The water consumptions also show large dependencies ontemperature whereas the power consumption appears to depend largely on the com-bination of temperature and humidity. As an example the dependability indices forthe power consumption variable are shown in �g. 3a. Clearly the �rst seven variableslisted in the �gure can be regarded as relevant. In particular the 1-lag variable y1(t�1)is a very important one, while time lags beyond three can be discarded. It is alsointeresting to estimate the noise level with this set of variables. It is seen on �g. 3bthat Pd(�) starts to deviate from 1 at �0 � 0:4 (c.f. �g. 1b). Assuming a Gaussian dis-tribution for the noise, its standard deviation can be estimated as �r � �0=3:6 = 0:11.Since the � in �g. 3b is given in unit of the standard deviation � of the WBE series,this means that the mean error one may achieve is 0:11�. Given that � = 149 and themean = 686 for the WBE data we used, the mean error translates into a CV = 0:024(see eq. (13)), a number comparable with the actual error we get out of an MLP.4.3 MLP Architecture and ParametersFor the WBE prediction we use an MLP with 7 hidden sigmoidal units, one linearoutput unit and 13 inputs;~x(t) = (y1(t� 1); y1(t� 2); x1(t); x2(t); x3(t); x4(t); sin(�x5(t)=12); cos(�x5(t)=12);sin(�x6(t)=7); cos(�x6(t)=7); x7(t); x7(t� 24); x7(t+ 24))where the last three inputs correspond to the day-codes for today, yesterday andtomorrow respectively.For the WBCW prediction we use an MLP with 11 hidden sigmoidal units, one linearoutput unit and 20 inputs;~x(t) = (y2(t� 1); x1(t); x2(t); x3(t); x4(t); x1(t� 1); x2(t� 1); x3(t� 1); x4(t� 1);x1(t� 2); x2(t� 2); x3(t� 2); x4(t� 2); sin(�x5(t)=12); cos(�x5(t)=12);sin(�x6(t)=7); cos(�x6(t)=7); x7(t); x7(t� 24); x7(t+ 24))Finally, for the WBHW prediction we use an MLP with 7 hidden sigmoidal units,one linear output unit and 13 inputs;~x(t) = (y3(t� 1); y3(t� 2); x1(t); x2(t); x3(t); x4(t); x2(t� 1); sin(�x5(t)=12);cos(�x5(t)=12); 7 � x6(t); x7(t); x7(t� 24); x7(t+ 24))All input values are normalized to the interval [0,1]. Standard backpropagation, asimplemented in JETNET 2.0 [6], is used with initial weights randomly distributed inthe interval [-0.1,0.1]. The learning rate and momentum term are set to 0.1 and 0.0respectively. The gradient is sampled over 20 randomly selected patterns for eachweight update. 8



4.4 ResultsThe data set includes a total of 4208 time steps (hours). The last 1282 time steps makeup the test set, in which the independent variables ~x(t) are given whereas the energyconsumptions ~y(t) were withheld by the organizers [1]. We thus have at our disposalthe data patterns [1,2926] that can be used to train the networks. The accuracy inpredicting the unknowns in the test set [2927,4208] is used by the organizers to scorethe generalization performances.We use the usual mean squared error (MSE)1N NXt=1(ŷ(t)� y(t))2 (12)to gauge the network performances. Since the previous signal value y(t� 1) is usedas input in all three cases, two types of errors are to be distinguished: One can makepredictions based on true y(t� 1) values whenever these are available. The resultanterror is then called the single step error (S-MSE). Alternatively, one can use thepredicted values of y iteratively to make further predictions by feeding the predictedoutput back as an input. The resultant error is called the multi-step error (M-MSE).The iterative approach is used for making predictions in the test set.The networks are trained in two stages:1. First a sample of 500 time steps [801,1300] are reserved from the training setto form a validation set. The networks are trained on the remaining 2426 datapoints. The multi-step errors are monitored and the network giving the best M-MSE on the validation set is picked out. We then make preliminary predictionsfor the time steps [2927,4208] based on the best network found.2. In the second stage we train the network on the entire training set (includingthe 500 time steps previously reserved), with the condition that the new pre-dictions may not drift too far from the preliminary predictions. Speci�cally wede�ne a mean squared deviation (MSD) between the preliminary and the newpredictions, and we �nally choose the network which minimizes a weighted sumof M-MSE on training set and M-MSD on the testing set.We �nd that in the stage 1 training the best M-MSE selected by the validation processdoes not always correspond to the best M-MSE for the entire training set. The stage2 \�ne tuning" process ensures that we do not get a solution that misrepresents the500 reserved patterns badly.The mean squared errors from the best networks achieved are summarized in table 1.The organizers have de�ned the coe�cient of variation (CV) and the mean bias error9



Stage I Stage IIData Set Learning Validation Training MSD(1-800,1301-2926) (801-1300) (1-2926) (2927-4208)WBE S-MSE 228.3 152.3 203.0 5.43M-MSE 881.9 381.3 726.8 61.15WBCW S-MSE 0.030 0.034 0.030 0.0009M-MSE 0.163 0.092 0.128 0.015WBHW S-MSE 0.047 0.038 0.045 0.0002M-MSE 0.121 0.056 0.100 0.0044Table 1: The mean squared errors for single step (S-MSE) and multi-step (M-MSE) predictions forvarious data sets at the stage I and stage II of the network training. The last column (MSD) is thedeviation of the stage II predictions from the preliminary stage I predictions.(MBE) as the following CV = 1y " 1N NXt=1(ŷ(t)� y(t))2#1=2 ;MBE = 1y 1N NXt=1(ŷ(t)� y(t)) (13)where y(t) = the true value of the signal, ŷ(t) = the predicted value, and y = theaverage of the true value. Our results for these two error measures on the trainingset and the test set are given in table 2.Training Set Test SetCV MBE CV MBES. Step M. Step S. Step M. Step M. Step M. StepWBE 0:0215 0:0407 �3:25 � 10�4 �1:26 � 10�5 0:1178 0:105WBCW 0:0345 0:0705 �7:55 � 10�4 �4:86 � 10�3 0:1296 �0:0595WBHW 0:1010 0:1512 �3:08 � 10�4 �1:70 � 10�3 0:3063 �0:2733Table 2: The coe�cient of variations (CV) and the mean bias errors (MBE) for the single step andmulti-step predictions, and for the training and test set, respectively.In �gs. 4{6 we show the comparison between the (multi-step) predictions and thetrue values. The bottom plot in each �gure are for the test sets in which the truevalues became known only after the predictions were made, and demonstrate thetrue generalization performance of the networks. Fig. 7 shows the predicted energyconsumptions as functions of the temperature.10



Figure 4: Predicted WBE consumption (the full lines) compared with data (the points).The residues (Prediction � Data) are shown in broken lines. (a) and (b) are for thetraining set (time steps 1 to 2926), and (c) is for the test set (time steps 2927 to 4208).4.5 Validation of the ResultAs mentioned above, the �-test can be used to check whether the network has learnedits task properly by applying the test on the residual error. If the amount of noiseresulting from the �-test equals the standard deviation of the residue signal, then itis very likely that the prediction is the best possible prediction (apart from minordi�erences between di�erent networks). We stress however that the �-test is based ontrue data values and therefore has direct relevance only to the single step predictiontask.The results from testing the single step residues indicate that for WBE and WBCWconsumptions our networks have pretty much reached their limits for learning the11



Figure 5: Predicted WBCWconsumption plotted together with the data and the residues.The notations are the same as in �g. 4.tasks, while for WBHW there may still be room for some improvement. However we�nd that for WBHW the best single step error does not necessarily correspond to thebest multi-step error. Since the latter is most relevant for this prediction task, wechoose to ignore the signal of the �-test and accept the network solution.5 Data Set B5.1 General Properties of DataThis set consists of 3344 solar radiation measurements during a sixth month period(August - May). The task is to predict y(~x) where12



Figure 6: Predicted WBHW consumption plotted together with the data and theresidues. The notations are the same as in �g. 4.y =true beam insolationx1 = decimal date (Julian day + hour/24)x2 = Horizontal solar 
ux (W/m2)x3 = South-East solar 
ux (W/m2)x4 = South solar 
ux (W/m2)x5 = South-West solar 
ux (W/m2)From a physics point of view it would be natural if the horizontal, south and totalsolar 
ux variables were all peeked around noon. However, visual inspection of thedata according to the description is not consistent with this. Since the notation ofthe input values is irrelevant for the results, we stick to the \shootout" labels in our13



Figure 7: Predicted WBE, WBCW and WBHW consumption versus the D.B. Temper-ature, respectively.description and calculations.5.2 Variable DependenciesThe solar 
ux has an obviously stronger dependency on the hour than on the (Julian)day and we therefore split the decimal date column into a day and an hour column.Results from applying the �-test [2] on this data set are shown in �g. 8. The y variablehas dependencies on the four angled measures of solar 
ux as well as on the hour, asseen in �g. 8a. However if the variables are reordered so that the hour is entered thelast, as shown in �g. 8c, one sees that the hour does not provide information that isextra to the four solar 
ux variables. This suggests that if a model is properly builtupon the angled solar 
ux measures there may be no need for an explicit dependencyon the hour. There appears to be no dependency on the (Julian) day either. Astriking feature is that the sum of indices gives 0.998 in either �g. 8a or �g. 8c, nearlysaturating to 1, which suggests a high deterministic relationship. This is in contrastto the data set A (�g. 3) where the sum of the indices yields 0.92 and a relatively large14



Figure 8: (a): Dependency indices �d for y (true beam insolation) on the independentvariables. (b): The probability Pd(�) as a function of � for the same set of variables in(a); d is marked on the curves. (c) and (d): The same as in (a) and (b) but for a di�erentordering of variables.noise level is found. From �g. 8b (or �g. 8d) we read �0 � 0:03, and the noise level�r � �0=3:6 = 0:0083. Multiplying by the standard deviation/mean ratio (316/381)of the y data set, the noise would correspond to an error measure CV � 0:007.5.3 ANN MethodGiven that there exists a function that fully determines the total solar 
ux we at-tempted some di�erent ANN architectures to approximate it. First we used a smallsubset of the training data as a validation set to monitor the performance. It turnedout that the error on the validation set always decreased with the error on the trainingset and that there is no need to use a validation set. We consequently chose to use thewhole training set for training. The ANN architecture that gave the best performanceis a standard MLP with 2 hidden layers, a single output unit and 7 inputs, where the15



inputs are ~x = (x2; x3; x4; x5; day; cos(hour); sin(hour)):We use no time-lagged inputs since the �-test suggests that the function is well de-termined by just using horizontal variables. All input values are normalized to theinterval [0; 1] and the output value is scaled by a factor of 1300. Initial weights arerandomly distributed in the interval [�0:3; 0:3]. During learning weights are updatedafter presentation of every 10 randomly selected patterns. All the calculations havebeen done using the F77 package JETNET 2.0 [6]. A Langevin updating scheme (seee.g. ref [7]) was used as it often performs better than backpropagation.5.4 ResultsIn �g. (9) a scatter plot is shown of true and predicted beam insolation for the trainingdata, with a variation coe�cient CV = 0:019 and a mean bias error MBE = �0:00032.Note that the CV achieved by the network is reasonably close to the rough estimateof the �-test. For the test data (a set of data in which the answers were withheld bythe organizers), the error measures give CV = 0.027 and MBE = 0.0017.

Figure 9: Scatter plot showing predicted beam insolation versus true beam insolation forthe training data of set B. 16



5.5 Validation of the ResultApplying the �-test to the residue � from the training set gives� = Ĝ(day; cos(hour); sin(hour); v2; :::; v5) + 
 ; (14)where the noise level 
 � stddev(�). This implies that another network trained onthe residue signal will only be able to learn within an error of about one standarddeviation, which is no improvement. We hence conclude that our prediction is goodenough.6 SummaryWe have approached the two data sets provided in \The Great Energy PredictorShootout - The First Building Data Analysis and Prediction Competition" [1] withan almost \black-box" procedure based upon� The �-test for establishing dependencies and gauging network performance.� A Multilayer Perceptron (MLP) [3] for modeling historic data.When selecting the appropriate ANN architecture and learning algorithm the choicesare a standard MLP and/or a recurrent network [5]. The former requires preprocessingin terms of choosing appropriately time-lagged inputs whereas the latter approach issupposed to select the relevant time-lags dynamically. With the �-test in our handsthe appropriate time-lags can be e�ciently selected for MLP processing.It should be stressed that some \expert" knowledge of holiday structure etc. is neededfor peak performance in data set A.Acknowledgements:We would like to thank Je� Sultan, Gordon-Prill, Inc., for sharing his knowledgeabout utility consumption patterns with us. This research was sponsored in part bythe G�oran Gustafsson Foundation for Research in Natural Science and Medicine.References[1] J.F. Kreider and J.S. Haberl, \The Great Energy Predictor Shootout - The FirstBuilding Data Analysis and Prediction Competition", this volume.[2] H. Pi and C. Peterson, \Finding the Embedding Dimension and Variable Depen-dencies in Time Series", LU TP 93-4 (to appear in Neural Computation).17
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